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 Abstract - The C3I (Command, Control, Communication and 
Information) Neptus framework which is being developed at the 
Underwater Systems and Technology Laboratory (USTL/LSTS) 
is presented. Neptus is a modular mixed initiative framework 
(human operators in the control loop) for the operation of  
heterogeneous teams of vehicles such as autonomous and 
remotely operated underwater, surface, land, and air vehicles. 
Neptus is composed of mission and vehicle planning, supervision, 
and post-mission analysis modules which are provided as services 
across a network. This paper focus mainly on the mission 
definition module with the presentation of MDL – a XML based 
language for mission definition. 
 
 Index Terms - Control Networks, Middleware, Systems 
Engineering, Systems networks, Underwater Vehicles. 
 

I.  INTRODUCTION 

 This paper presents the Neptus C3I (Command, Control, 
Communication and Information) infrastructure for the 
coordination and control of teams of multiple autonomous and 
semi-autonomous vehicles. Neptus is a mixed initiative 
environment (operators in the control loop) which is being 
developed to support operational deployments of autonomous 
and remotely operated vehicles from the Underwater Systems 
and Technology Laboratory (USTL/LSTS) from Porto 
University. Operational deployments involve a wide variety of 
interactions between operators (human or automated) and 
vehicles which include: mission setup and vehicle preparation 
(extensions for multi-vehicle operations are under 
development); real-time data acquisition and visualization; 
operator supervision; coordinated control of multiple vehicles 
(fleet control); and post-mission review and data analysis. 

The USTL is currently operating three types of ocean 
going vehicles: ROV (Remotely Operated Vehicle), ASV 
(Autonomous Surface Vehicle) and AUV (Autonomous 
Underwater Vehicle). These capabilities will be extended in 
2006 with the addition of UAVs (Unmanned Air Vehicle). 
The ROVs are being developed under the KOS (Kit of 
underwater operations) project [1] and the AUV and the ASVs 
are being developed under the PISCIS (Prototype of an 
Integrated System for Coastal waters Intensive Sampling) 
project. These joint operations, with heterogeneous multiple 
vehicles, and the need to control the complete fleet in a 
coordinate manner set the motivation and the requirements for 

the development of Neptus. 
The development of the Neptus framework followed the 

Systems Engineering Process [2]. In this process, each stage 
of the systems life cycle is divided in three activities: 
Requirements analysis; Functional analysis; and Synthesis and 
design. System life cycle stages range from “System 
definition” to “Costumer support”, including “Subsystem 
definition” and “Production”. The Neptus framework is 
currently in the final phase of the “Subsystem definition” 
stage: the subsystems have been integrated and system wide 
tests are being performed. Neptus has been deployed along 
with ROVs, ASVs and AUVs in operations which took place 
in 2005 in Portugal. 

This paper is organized as follows. Section II presents the 
motivation and state of the art of existing tools. The 
requirements that guided the development of the Neptus 
infrastructure, the definition of subsystems, components and 
architecture are presented in section III. Section IV describes 
the architecture and the common operational scenarios of the 
tool. Section V presents the Mission Planner application 
focusing on the mission definition. Section VI illustrates the 
use of Neptus in an operational deployment with the ISURUS 
AUV. Finally, in section VII, conclusions and an outline of 
future work are presented. 

II. MOTIVATION AND STATE OF THE ART 

Currently there are multiple software applications which 
support the operation of autonomous and remotely operated 
vehicles operations. Most of these applications are basically 
operational consoles. Consoles tend to be designed and 
developed as new requirements arise. Most of these consoles 
lack the modularity needed to extend its functionalities to 
other vehicles and types of operations. Examples include the 
REMUS AUV [3] console. The main objective of this 
application is to display the REMUS AUV vehicle trajectories 
by means of an animated replay. During replay, data gathered 
is shown in the form of 2D graphical plots. There is also the 
possibility to define new missions through the specification of 
waypoints. However, little support is given for 
communications with other devices like computers, databases 
or other vehicles and there is no possibility to simulate future 
missions. Another example for this kind of applications is the 
ROV hardware based console from Deep Ocean Engineering 
[4]. This console has no visual interface what makes it 



difficult to integrate the ROV mission with other vehicles or 
consoles in a cooperative manner. 

In the early days of the USTL laboratory we operated one 
Phantom class ROV vehicle and there was no need for a 
modular console. Currently, we are working with different 
types of vehicles which are designed for cooperative missions 
in a mixed initiative environment where vehicles and systems 
come and go. This requires a different approach to the 
development of consoles. In this approach we have designed 
and developed a modular framework which can be configured 
for different vehicles and interactions. 

One case where this level of integration is being done is at 
the Naval Postgraduate School (NPS) with the AUV 
Workbench [5]. AUV Workbench allows the visualization of 
the vehicle’s behavior by means of simulation of the AUV 
physical equations. It is possible to view the vehicle’s 
behavior in 2D or 3D recurring to VRML technology, being 
easy to do revision and rehearsal of AUV missions. This 
application proves to be very useful for control algorithm 
development and testing because of its physical model 
implementation. The user also has the possibility to do 
mission planning and save this plan in the form of a XML 
(eXtensible Markup Language) [6]. Then by means of 
eXtensible Stylesheet Language Transformation (XSLT) the 
mission can be translated to several different types of vehicles. 
This workbench also provides reliable data transfer between 
AUVs, other vehicles, server agents and human controllers 
and automatically logs all communications what facilitates 
data retrieval for post-mission-analysis and mission 
reconstruction. 

Although the AUV workbench was designed for use with 
multiple vehicles it lacks distributed hybrid systems control 
concepts which facilitate the development and formal 
verification of cooperative missions. On-going projects at 
USTL require vehicle interactions in the context of dynamic 
networks of hybrid systems [7].  

Neptus is also being integrated with sensor networks in 
such a way that missions can be re-planned in real time based 
on the information gathered by these networks. 

III. THE REQUIREMENTS 

This section describes system requirements for the Neptus 
systems from the user’s point of view. The exposition is 
partially based on IEEE Std. 1362-1998 [8], which is a 
standard for system characteristics description based on the 
definition of Concept of Operations (ConOps). 

The execution of operational missions with the USTL 
underwater vehicles is the main motivation for the Neptus 
framework. Missions can be performed with either a single 
vehicle or with a set of vehicles, depending on the mission 
objectives. The vehicles can be of various types, including 
AUVs, ROVs, UAVs and ASVs. The mission execution with 
these classes of vehicles requires four main steps ([9] and 
[10]): operational setup, mission programming, mission 
execution and mission analysis. 

The operational setup phase deals with the reconnaissance 
of the operational site and identifies the mission objectives. In 
the mission programming phase, the path (or area of 
operation) of the vehicle(s) is defined and a mission is 
specified by selecting a pre-defined set of maneuvers and 

tasks. In the mission execution phase there are several types of 
interactions depending on range and communication 
bandwidth. Typically communications with underwater 
vehicles are either slow (through acoustic modems) or non-
existent, This may also be the case with other vehicles when 
operating out of communication range. In this case the data 
gathered by these vehicles can only be seen in the mission 
analysis phase. In the case of ROVs, since there is always a 
connection between the operator and the on-board computer 
of the ROV, the user may operate the vehicle through a 
joystick and has continuous real-time access to the data 
acquired by its sensors [11]. The mission analysis phase is the 
last of the mission phases and concerns the post-mission 
analysis of an operational deployment. 

The Neptus framework [12] was designed to fulfill the 
operational mission requirements described above. Thus, the 
top level requirements are listed below: 

 An application to define the environment of the 
operational mission. This includes navigational 
references, bottom profiles, obstacles, and landmarks; 
 An application for the mission programming;  
 A console to establish a link between the support and the 
on-board computers. In the ROV class, the console 
should enable users to send joystick commands and 
visualize  data in real-time; 
 A simulation platform to allow the user to verify the 
conformity of the mission program. This tool will give 
the user the chance to debug its own mission plan; 
 A tool for mission review and analysis; and 
 A repository for the gathered data with associated 
querying services. 

 
Neptus is intended to be used in several scenarios [10] 

with different types of vehicles. Thus, the framework has to be 
designed in a way that some portion of the framework 
(modules) may be used separately from the other modules. 
These modules must be designed to be easily integrated in the 
already existing software. 

IV. ARCHITECTURE 

This application is organized into several applica-
tions/modules that, together, compose the Neptus environment. 
The deployment diagram depicted in Fig. 1, presents the five 
main applications and connections. 

Vehicle Mission 
Console

Mission 
Planner

Mission Review & 
Analysis

Multiple Vehicle 
Simulator

Mission Data 
Broker

*

 
Fig. 1.  Deployment diagram 

The five main applications/modules are: Mission Planner 
(MP), Mission Console (MC), Mission Reviewer & Analysis 
(MRA), Mission Data Broker (MDB) and the Multiple 
Vehicle Simulator (MVS). 



The Mission Planner (MP) application (see section VI) is 
intended to be used in the mission preparation and setup. This 
activity includes the generation/edition of missions, and map 
generation with the ability to prepare visual aids of the 
mission site and some additional; minor but helpful; 
functionalities. For this, it is necessary to define a 
language/syntax to describe the mission, the allocated vehicles 
and the individual and coordinated mission plans. For this 
purpose, we use XML (eXtensible Markup Language) [6]. 
The output of the MP will then be used as an input to the 
Mission Console (MC). 

The Mission Console (MC) is the application in charge of 
the mission execution (partially presented in Fig. 2). As stated 
above, the inputs of this application are created in the MP. 
This application must also provide all the required 
functionalities to control and operate the vehicles, such as, 
visualization of the vehicle(s) state, and interfaces to send 
commands to the vehicle(s). In some circumstances, such as 
the operation of an ROV, the motion commands may be sent 
through a joystick. The vehicles may also be controlled by a 
hybrid automaton controller residing in this application. 
Naturally, several sub-modules of this application will run 
inside the vehicles being operated. This application will also 
be in charge of the translation of the Neptus mission language 
to the vehicles language.  

The post-mission analysis is supported by the Mission 
Reviewer & Analysis (MRA) application (section VI). This 
will deal with the compilation and treatment of the collected 
data. It will also provide the support to replay the mission 
under analysis. 

 
Fig. 2. ROV Mission Console 

The central repository where all the gathered data can be 
stored, properly organized, controlled and published is the 
Mission Data Broker (MDB). This module/application will be 
based on a SOA (Service Oriented Architecture) with 
connection with other application/modules supported by web 
services. This application is not yet built but will allow the 
future web based access to the data collected in the missions. 
For this purpose several services have to be available. One of 
them will be the authentication and authorization service. This 
will control who is able to access to the data and to what data. 
Another service will be the mission requester that will allow 
people to request some service from our vehicles. Other 
services are being considered. 

The Multiple Vehicle Simulator (MVS) will provide the 
functionalities needed to pre-execute a mission and assess its 

viability. This application will provide the service of several 
simulated vehicles that can be used with the MC or with the 
MP for a more accurately mission preview. At a moment only 
a basic simulator is implemented and connects to Neptus with 
the same interfaces as the actual vehicle. One future evolution 
will be the support of hardware in the loop simulation. 

All the data that is produced in one of the described 
applications is then consumed by another one in a different 
stage of a mission. For the data representation XML [6] was 
chosen. 

V.  THE MISSION PLANNER 

The Mission Planner (MP) is used to plan and evaluate a 
mission. Fig. 3, depicts the use case for the development of 
this module. 

The MP is decomposed into several components: Map 
Editor Module (MEM); Mission Graph Editor Module 
(MGEM); Preview State Generator Module (PSGM) and 
World State Renderer Module (WSRM). Each component is 
also used in other Neptus modules. 

The mission editor is the main component of the MP And 
serves as the mission graphical editor, defining all the mission 
elements (Fig. 4) described in [10]. 

Another important component is the Map Editor Module 
(MEM). Each map is basically a set of objects with attributes 
such as size, position or shape. The user is able to insert any 
number of objects on the map. Typical objects are marks, 
transponders, geometrical shapes (like parallelepipeds or 
ellipsoids), and free-hand and computer generated drawings 
(or paths) and images. 

The Mission Graph Editor Module (MGEM) is used to 
create the plans which are modeled as hybrid automata. This 
editor allows the visual construction of automata in which 
each node is a maneuver and the transitions describe the 
maneuver logic. 

define mission 
HomeReferencial

fill the mission info (header)

fill the mission definitions

create missionUser

assign vehicles to the 
mission

define VehicleReferencial

assign maps to mission

create new map assign existent map edit map

create plans

 
Fig. 3. Create mission use case diagram 

The Preview State Generator Module (PSGM) is used in 
conjunction with the World State Renderer Module (WSRM) 
to perform the animation of the mission plan. , This module 
enables the user to preview the mission before it is actually 
executed. 

The WSRM module supports the visual representation of 



the world; it is used in most of the main applications (MC, MP 
and MRA). There are several ways of displaying this: as text 
messages; as 2D; and as 3D visualizations. 

 

 
Fig. 4. Mission schema 

A.  Control Architcture 

The mission plan is uploaded to each vehicle. The control 
architecture ensures that the plan is actually executed. The 
reference USTL control architecture [13] is depicted in Fig. 5.  

At the bottom we have the low level controllers. This layer 

abstracts the interactions with the vehicle sensors and 
actuators in a modular interface.  

The concept of maneuver plays a central role in the USTL 
control architecture: it facilitates the task of mission 
specification, since it is easily understood by a mission 
specialist; it is easily mapped onto self-contained controllers, 
since it encodes the control logic; and is a key element in 
modular design, since it defines clear interfaces to other 
control elements. Depending on the type of vehicle we can 
find maneuvers like: Hover, FollowTrajectory, FollowWall, 
Surface, Goto, Rows, Tele-operation and others. Let us take a 
closer look to the Goto maneuver. The maneuver is 
represented in a labeled transition system. Each transition is 
labeled with a guard, the condition under which the transition 
can take place, and an event, the message sent out when the 
transition is taken; the two are separated by a / in the figure.  

The Goto maneuver starts in the Init state. If it receives the 
start event from the vehicle supervisor, it goes to the O2Txy 
state (move to the target on the xy plane). In this state the 
vehicle heading controller is switched on with a calculated 
heading reference. If the vehicle reaches the desired 
orientation within some bound, the maneuver controller goes 
to the next state G2Txy (go to target on the xy plane). In this 
control location the xy low level controller is switched on and 
the vehicle moves toward the final position. If it reaches the 
final position, the controller changes again to the G2Tz (go to 
target on z). If there were no problems in the previous three 
control locations, the maneuver is completed successfully. A 
timeout occurs if, for example, the vehicle gets stuck and 
execution does not advance. In this case the maneuver 
controller goes to the error state and an error code is sent to 
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Fig. 5. Control Architecture



the vehicle supervisor. 
Next, we have the vehicle supervisor which has 4 states: 

Init, Exec, Error, and Idle. The vehicle supervisor is initially 
in the state Idle. Upon the reception of a maneuver 
specification it creates a maneuver controller if the enabling 
condition is true. When the maneuver is completed it goes to 
the Idle state again, otherwise, the transition to the Error state 
is taken, and it sends an err_code event to the plan supervisor, 
and the plan fails. 

On top of this architecture we have the plan and the plan 
Supervisor. The plan Supervisor commands and controls the 
execution of the mission plan. It commands the vehicle 
supervisor to trigger the execution of a maneuver specification 
and waits for the acknowledgment of its completion, or for an 
error. When it receives the acknowledgement, the plan 
supervisor selects the next maneuver to be executed. The 
process is repeated until the plan is successfully terminated, or 
it fails. 

Neptus allows the definition of maneuvers other than the 
vehicle elemental maneuvers. These are libraries of composed 
maneuvers which can be re-used in other plans. 

B.  Mission Planning 

In order to make the planning of a mission several tasks 
have to be engaged. As we saw in section III there are several 
things that have to be prepared in order to achieve a successful 
mission. From the reconnaissance of the mission site we will 
be able to construct a digital representation of the site. This 
will be the mission map. It will have information of objects 
like: marks, transponders, geometrical shapes and paths. All 
of these objects can be used as a reference when we are 
preparing the vehicles plan. 

This data will be stored in XML format. The map 
information is part of the mission planning data. As seen in 
Fig. 4 the mission planning data contains the information 
required to guide the execution [10]. 

As mentioned before, a mission consists of various pieces 
of information. One of those pieces is an individual plan. An 
individual plan indicates which vehicle (or class of vehicles) 
can perform it and the sequence of maneuvers to be executed. 
This represents a series of maneuvers, commands and 
conditions of transition between them. 

The most appealing way of representing this kind of 
information is a graph, so we created a component that allows 
the user to visually define an individual plan in the form of a 
graph, the Mission Graph Editor (MGE). 

C.  Mission Tasks 

In order to define plans to a vehicle or a set of vehicles we 
need to define a series of tasks. These tasks can be either 
simple or they can be composed. Tasks basically involve the 
execution of maneuvers. 

Maneuvers are of two kinds: basic and composed. It can be 
selectable from a series of pre-defined ones like the Goto 
maneuver. In terms of commands we can think of a Reset 
Logger or perform a GPS Fix. 

Each type of maneuver (simple or composed) has a 
common structure: a body; a pre-execution area; an on-
-execution area; and a pos-execution area. The body is used to 

add the content of the task. The other three areas define the 
commands that are to be executed prior to the initiation of the 
task, during its execution and at the end of its execution. The 
control logic is encoded as predicates which state the 
conditions under which a transition occur in the maneuver 
automaton. 

As a summary, we can show the current data structure for 
the plan: 

 
Plan 

- Task 1: 
o Vehicle ID 
o Maneuver1 

 Characteristics: 
• ID 
• Elemental Type (vehicle) 
• Composed Type (console) 

 Maneuver Parameters 
 Commands  

• onEntry 
• during 
• onExit 

 Next Maneuver 
 Condition 
  

o Maneuver 2: 
  

o Commands 
 onEntry 
 during 
 onExit 

o  
- Task 2: 

 
 

Because we want to allow some flexibility in the tasks 
definition it is provided, either by programmatic interfaces, or 
providing a language, the ability to create new tasks. 

The mission data is stored in an XML document and 
complies with the rules defined in the mission schema. 

VI.  OPERATIONS 

This session presents a use case of Neptus in a mission 
performed with the Isurus AUV in the Nautical Center in 
Montemor-o-Velho in Portugal (Fig. 6). 

 

 
Fig. 6. Isurus AUV in Montemor-o-Velho Nautical Center, Portugal 



 
Fig. 7. Preparation in MP of Montemor-o-Velho Nautical Center mission 

 
Fig. 8. Tracker Console 

 
Fig. 9. Mission analysis with MRA 

In Fig. 7 we see the MP application with the Nautical 
Center map and a row maneuver made out of several Goto’s. 
In Fig. 8 we see the MC for the tracker application where the 
vehicle’s position in the mission execution can be estimated 
by acoustics. In Fig. 9 we see the MRA where the mission 
executed was reviewed and analyzed. 

VII.  CONCLUSIONS AND FUTURE WORK 

This paper presented the Neptus framework, a mixed-
initiative environment to support the coordinated joint 
operation of multiple autonomous and semi-autonomous 
vehicles. This framework has been deployed in single vehicle 

operations. These range from AUVs, to ASVs, and ROVs. We 
are in the process of adding UAV models to the Neptus 
database. 

The extensions to multiple vehicle operations have been 
tested in simulations and the first operational deployments 
will take place during the first semester of 2006. To do this we 
have used a Publish/Subscribe (P/S) middleware framework to 
distribute the framework across a local area network. Future 
work includes transfer of control authority among consoles 
and operators, and multi-vehicle planning and supervision.  
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