
Mission Planning and Specification in the Neptus
Framework

Paulo Sousa Dias Rui M. F. Gomes José Pinto
Gil M. Gonçalves João Borges Sousa Fernando Lobo Pereira

LSTS – Underwater Systems and Technology Laboratory

Faculdade de Engenharia da Universidade do Porto
Rua Dr. Roberto Frias s/n
4200-465 Porto, Portugal

{pdias,rgomes,zepinto,gil,jtasso,flp}@fe.up.pt

 Abstract - The C3I (Command, Control, Communication and
Information) Neptus framework which is being developed at the
Underwater Systems and Technology Laboratory (USTL/LSTS)
is presented. Neptus is a modular mixed initiative framework
(human operators in the control loop) for the operation of
heterogeneous teams of vehicles such as autonomous and
remotely operated underwater, surface, land, and air vehicles.
Neptus is composed of mission and vehicle planning, supervision,
and post-mission analysis modules which are provided as services
across a network. This paper focus mainly on the mission
definition module with the presentation of MDL – a XML based
language for mission definition.

 Index Terms - Control Networks, Middleware, Systems
Engineering, Systems networks, Underwater Vehicles.

I. INTRODUCTION

 This paper presents the Neptus C3I (Command, Control,
Communication and Information) infrastructure for the
coordination and control of teams of multiple autonomous and
semi-autonomous vehicles. Neptus is a mixed initiative
environment (operators in the control loop) which is being
developed to support operational deployments of autonomous
and remotely operated vehicles from the Underwater Systems
and Technology Laboratory (USTL/LSTS) from Porto
University. Operational deployments involve a wide variety of
interactions between operators (human or automated) and
vehicles which include: mission setup and vehicle preparation
(extensions for multi-vehicle operations are under
development); real-time data acquisition and visualization;
operator supervision; coordinated control of multiple vehicles
(fleet control); and post-mission review and data analysis.

The USTL is currently operating three types of ocean
going vehicles: ROV (Remotely Operated Vehicle), ASV
(Autonomous Surface Vehicle) and AUV (Autonomous
Underwater Vehicle). These capabilities will be extended in
2006 with the addition of UAVs (Unmanned Air Vehicle).
The ROVs are being developed under the KOS (Kit of
underwater operations) project [1] and the AUV and the ASVs
are being developed under the PISCIS (Prototype of an
Integrated System for Coastal waters Intensive Sampling)
project. These joint operations, with heterogeneous multiple
vehicles, and the need to control the complete fleet in a
coordinate manner set the motivation and the requirements for

the development of Neptus.
The development of the Neptus framework followed the

Systems Engineering Process [2]. In this process, each stage
of the systems life cycle is divided in three activities:
Requirements analysis; Functional analysis; and Synthesis and
design. System life cycle stages range from “System
definition” to “Costumer support”, including “Subsystem
definition” and “Production”. The Neptus framework is
currently in the final phase of the “Subsystem definition”
stage: the subsystems have been integrated and system wide
tests are being performed. Neptus has been deployed along
with ROVs, ASVs and AUVs in operations which took place
in 2005 in Portugal.

This paper is organized as follows. Section II presents the
motivation and state of the art of existing tools. The
requirements that guided the development of the Neptus
infrastructure, the definition of subsystems, components and
architecture are presented in section III. Section IV describes
the architecture and the common operational scenarios of the
tool. Section V presents the Mission Planner application
focusing on the mission definition. Section VI illustrates the
use of Neptus in an operational deployment with the ISURUS
AUV. Finally, in section VII, conclusions and an outline of
future work are presented.

II. MOTIVATION AND STATE OF THE ART

Currently there are multiple software applications which
support the operation of autonomous and remotely operated
vehicles operations. Most of these applications are basically
operational consoles. Consoles tend to be designed and
developed as new requirements arise. Most of these consoles
lack the modularity needed to extend its functionalities to
other vehicles and types of operations. Examples include the
REMUS AUV [3] console. The main objective of this
application is to display the REMUS AUV vehicle trajectories
by means of an animated replay. During replay, data gathered
is shown in the form of 2D graphical plots. There is also the
possibility to define new missions through the specification of
waypoints. However, little support is given for
communications with other devices like computers, databases
or other vehicles and there is no possibility to simulate future
missions. Another example for this kind of applications is the
ROV hardware based console from Deep Ocean Engineering
[4]. This console has no visual interface what makes it

difficult to integrate the ROV mission with other vehicles or
consoles in a cooperative manner.

In the early days of the USTL laboratory we operated one
Phantom class ROV vehicle and there was no need for a
modular console. Currently, we are working with different
types of vehicles which are designed for cooperative missions
in a mixed initiative environment where vehicles and systems
come and go. This requires a different approach to the
development of consoles. In this approach we have designed
and developed a modular framework which can be configured
for different vehicles and interactions.

One case where this level of integration is being done is at
the Naval Postgraduate School (NPS) with the AUV
Workbench [5]. AUV Workbench allows the visualization of
the vehicle’s behavior by means of simulation of the AUV
physical equations. It is possible to view the vehicle’s
behavior in 2D or 3D recurring to VRML technology, being
easy to do revision and rehearsal of AUV missions. This
application proves to be very useful for control algorithm
development and testing because of its physical model
implementation. The user also has the possibility to do
mission planning and save this plan in the form of a XML
(eXtensible Markup Language) [6]. Then by means of
eXtensible Stylesheet Language Transformation (XSLT) the
mission can be translated to several different types of vehicles.
This workbench also provides reliable data transfer between
AUVs, other vehicles, server agents and human controllers
and automatically logs all communications what facilitates
data retrieval for post-mission-analysis and mission
reconstruction.

Although the AUV workbench was designed for use with
multiple vehicles it lacks distributed hybrid systems control
concepts which facilitate the development and formal
verification of cooperative missions. On-going projects at
USTL require vehicle interactions in the context of dynamic
networks of hybrid systems [7].

Neptus is also being integrated with sensor networks in
such a way that missions can be re-planned in real time based
on the information gathered by these networks.

III. THE REQUIREMENTS

This section describes system requirements for the Neptus
systems from the user’s point of view. The exposition is
partially based on IEEE Std. 1362-1998 [8], which is a
standard for system characteristics description based on the
definition of Concept of Operations (ConOps).

The execution of operational missions with the USTL
underwater vehicles is the main motivation for the Neptus
framework. Missions can be performed with either a single
vehicle or with a set of vehicles, depending on the mission
objectives. The vehicles can be of various types, including
AUVs, ROVs, UAVs and ASVs. The mission execution with
these classes of vehicles requires four main steps ([9] and
[10]): operational setup, mission programming, mission
execution and mission analysis.

The operational setup phase deals with the reconnaissance
of the operational site and identifies the mission objectives. In
the mission programming phase, the path (or area of
operation) of the vehicle(s) is defined and a mission is
specified by selecting a pre-defined set of maneuvers and

tasks. In the mission execution phase there are several types of
interactions depending on range and communication
bandwidth. Typically communications with underwater
vehicles are either slow (through acoustic modems) or non-
existent, This may also be the case with other vehicles when
operating out of communication range. In this case the data
gathered by these vehicles can only be seen in the mission
analysis phase. In the case of ROVs, since there is always a
connection between the operator and the on-board computer
of the ROV, the user may operate the vehicle through a
joystick and has continuous real-time access to the data
acquired by its sensors [11]. The mission analysis phase is the
last of the mission phases and concerns the post-mission
analysis of an operational deployment.

The Neptus framework [12] was designed to fulfill the
operational mission requirements described above. Thus, the
top level requirements are listed below:

 An application to define the environment of the
operational mission. This includes navigational
references, bottom profiles, obstacles, and landmarks;
 An application for the mission programming;
 A console to establish a link between the support and the
on-board computers. In the ROV class, the console
should enable users to send joystick commands and
visualize data in real-time;
 A simulation platform to allow the user to verify the
conformity of the mission program. This tool will give
the user the chance to debug its own mission plan;
 A tool for mission review and analysis; and
 A repository for the gathered data with associated
querying services.

Neptus is intended to be used in several scenarios [10]

with different types of vehicles. Thus, the framework has to be
designed in a way that some portion of the framework
(modules) may be used separately from the other modules.
These modules must be designed to be easily integrated in the
already existing software.

IV. ARCHITECTURE

This application is organized into several applica-
tions/modules that, together, compose the Neptus environment.
The deployment diagram depicted in Fig. 1, presents the five
main applications and connections.

Vehicle Mission
Console

Mission
Planner

Mission Review &
Analysis

Multiple Vehicle
Simulator

Mission Data
Broker

*

Fig. 1. Deployment diagram

The five main applications/modules are: Mission Planner
(MP), Mission Console (MC), Mission Reviewer & Analysis
(MRA), Mission Data Broker (MDB) and the Multiple
Vehicle Simulator (MVS).

The Mission Planner (MP) application (see section VI) is
intended to be used in the mission preparation and setup. This
activity includes the generation/edition of missions, and map
generation with the ability to prepare visual aids of the
mission site and some additional; minor but helpful;
functionalities. For this, it is necessary to define a
language/syntax to describe the mission, the allocated vehicles
and the individual and coordinated mission plans. For this
purpose, we use XML (eXtensible Markup Language) [6].
The output of the MP will then be used as an input to the
Mission Console (MC).

The Mission Console (MC) is the application in charge of
the mission execution (partially presented in Fig. 2). As stated
above, the inputs of this application are created in the MP.
This application must also provide all the required
functionalities to control and operate the vehicles, such as,
visualization of the vehicle(s) state, and interfaces to send
commands to the vehicle(s). In some circumstances, such as
the operation of an ROV, the motion commands may be sent
through a joystick. The vehicles may also be controlled by a
hybrid automaton controller residing in this application.
Naturally, several sub-modules of this application will run
inside the vehicles being operated. This application will also
be in charge of the translation of the Neptus mission language
to the vehicles language.

The post-mission analysis is supported by the Mission
Reviewer & Analysis (MRA) application (section VI). This
will deal with the compilation and treatment of the collected
data. It will also provide the support to replay the mission
under analysis.

Fig. 2. ROV Mission Console

The central repository where all the gathered data can be
stored, properly organized, controlled and published is the
Mission Data Broker (MDB). This module/application will be
based on a SOA (Service Oriented Architecture) with
connection with other application/modules supported by web
services. This application is not yet built but will allow the
future web based access to the data collected in the missions.
For this purpose several services have to be available. One of
them will be the authentication and authorization service. This
will control who is able to access to the data and to what data.
Another service will be the mission requester that will allow
people to request some service from our vehicles. Other
services are being considered.

The Multiple Vehicle Simulator (MVS) will provide the
functionalities needed to pre-execute a mission and assess its

viability. This application will provide the service of several
simulated vehicles that can be used with the MC or with the
MP for a more accurately mission preview. At a moment only
a basic simulator is implemented and connects to Neptus with
the same interfaces as the actual vehicle. One future evolution
will be the support of hardware in the loop simulation.

All the data that is produced in one of the described
applications is then consumed by another one in a different
stage of a mission. For the data representation XML [6] was
chosen.

V. THE MISSION PLANNER

The Mission Planner (MP) is used to plan and evaluate a
mission. Fig. 3, depicts the use case for the development of
this module.

The MP is decomposed into several components: Map
Editor Module (MEM); Mission Graph Editor Module
(MGEM); Preview State Generator Module (PSGM) and
World State Renderer Module (WSRM). Each component is
also used in other Neptus modules.

The mission editor is the main component of the MP And
serves as the mission graphical editor, defining all the mission
elements (Fig. 4) described in [10].

Another important component is the Map Editor Module
(MEM). Each map is basically a set of objects with attributes
such as size, position or shape. The user is able to insert any
number of objects on the map. Typical objects are marks,
transponders, geometrical shapes (like parallelepipeds or
ellipsoids), and free-hand and computer generated drawings
(or paths) and images.

The Mission Graph Editor Module (MGEM) is used to
create the plans which are modeled as hybrid automata. This
editor allows the visual construction of automata in which
each node is a maneuver and the transitions describe the
maneuver logic.

define mission
HomeReferencial

fill the mission info (header)

fill the mission definitions

create missionUser

assign vehicles to the
mission

define VehicleReferencial

assign maps to mission

create new map assign existent map edit map

create plans

Fig. 3. Create mission use case diagram

The Preview State Generator Module (PSGM) is used in
conjunction with the World State Renderer Module (WSRM)
to perform the animation of the mission plan. , This module
enables the user to preview the mission before it is actually
executed.

The WSRM module supports the visual representation of

the world; it is used in most of the main applications (MC, MP
and MRA). There are several ways of displaying this: as text
messages; as 2D; and as 3D visualizations.

Fig. 4. Mission schema

A. Control Architcture

The mission plan is uploaded to each vehicle. The control
architecture ensures that the plan is actually executed. The
reference USTL control architecture [13] is depicted in Fig. 5.

At the bottom we have the low level controllers. This layer

abstracts the interactions with the vehicle sensors and
actuators in a modular interface.

The concept of maneuver plays a central role in the USTL
control architecture: it facilitates the task of mission
specification, since it is easily understood by a mission
specialist; it is easily mapped onto self-contained controllers,
since it encodes the control logic; and is a key element in
modular design, since it defines clear interfaces to other
control elements. Depending on the type of vehicle we can
find maneuvers like: Hover, FollowTrajectory, FollowWall,
Surface, Goto, Rows, Tele-operation and others. Let us take a
closer look to the Goto maneuver. The maneuver is
represented in a labeled transition system. Each transition is
labeled with a guard, the condition under which the transition
can take place, and an event, the message sent out when the
transition is taken; the two are separated by a / in the figure.

The Goto maneuver starts in the Init state. If it receives the
start event from the vehicle supervisor, it goes to the O2Txy
state (move to the target on the xy plane). In this state the
vehicle heading controller is switched on with a calculated
heading reference. If the vehicle reaches the desired
orientation within some bound, the maneuver controller goes
to the next state G2Txy (go to target on the xy plane). In this
control location the xy low level controller is switched on and
the vehicle moves toward the final position. If it reaches the
final position, the controller changes again to the G2Tz (go to
target on z). If there were no problems in the previous three
control locations, the maneuver is completed successfully. A
timeout occurs if, for example, the vehicle gets stuck and
execution does not advance. In this case the maneuver
controller goes to the error state and an error code is sent to

Plan

Init M1

M2 End

Plan Supervisor

M1, M2…

Error
M1, Xi, Xf,
maxError…

GoTo
Init

O2Txy

Idle

Maneuver Controllers
Hovering

…

Others

Composed Maneuvers DB

Neptus

Vehicles

Vehicle 1
Vehicle 2

Low Level Controllers

XY

Full State

Z ψ

u

v

w …

Task 1

Task 2

M1 M2

Vehicle Supervisor

Init

Error

Exec

Idle

Start

x>1
t>2

y>1/end

t>1

x>1

init

start/create

done/done

err/err code

abort/aborted
start

err/err code

…

G2Txy G2Tz

e<δψ e<δxy

Error e<δz/d
one

t>1 t>4 t>1

Neptus

Fig. 5. Control Architecture

the vehicle supervisor.
Next, we have the vehicle supervisor which has 4 states:

Init, Exec, Error, and Idle. The vehicle supervisor is initially
in the state Idle. Upon the reception of a maneuver
specification it creates a maneuver controller if the enabling
condition is true. When the maneuver is completed it goes to
the Idle state again, otherwise, the transition to the Error state
is taken, and it sends an err_code event to the plan supervisor,
and the plan fails.

On top of this architecture we have the plan and the plan
Supervisor. The plan Supervisor commands and controls the
execution of the mission plan. It commands the vehicle
supervisor to trigger the execution of a maneuver specification
and waits for the acknowledgment of its completion, or for an
error. When it receives the acknowledgement, the plan
supervisor selects the next maneuver to be executed. The
process is repeated until the plan is successfully terminated, or
it fails.

Neptus allows the definition of maneuvers other than the
vehicle elemental maneuvers. These are libraries of composed
maneuvers which can be re-used in other plans.

B. Mission Planning

In order to make the planning of a mission several tasks
have to be engaged. As we saw in section III there are several
things that have to be prepared in order to achieve a successful
mission. From the reconnaissance of the mission site we will
be able to construct a digital representation of the site. This
will be the mission map. It will have information of objects
like: marks, transponders, geometrical shapes and paths. All
of these objects can be used as a reference when we are
preparing the vehicles plan.

This data will be stored in XML format. The map
information is part of the mission planning data. As seen in
Fig. 4 the mission planning data contains the information
required to guide the execution [10].

As mentioned before, a mission consists of various pieces
of information. One of those pieces is an individual plan. An
individual plan indicates which vehicle (or class of vehicles)
can perform it and the sequence of maneuvers to be executed.
This represents a series of maneuvers, commands and
conditions of transition between them.

The most appealing way of representing this kind of
information is a graph, so we created a component that allows
the user to visually define an individual plan in the form of a
graph, the Mission Graph Editor (MGE).

C. Mission Tasks

In order to define plans to a vehicle or a set of vehicles we
need to define a series of tasks. These tasks can be either
simple or they can be composed. Tasks basically involve the
execution of maneuvers.

Maneuvers are of two kinds: basic and composed. It can be
selectable from a series of pre-defined ones like the Goto
maneuver. In terms of commands we can think of a Reset
Logger or perform a GPS Fix.

Each type of maneuver (simple or composed) has a
common structure: a body; a pre-execution area; an on-
-execution area; and a pos-execution area. The body is used to

add the content of the task. The other three areas define the
commands that are to be executed prior to the initiation of the
task, during its execution and at the end of its execution. The
control logic is encoded as predicates which state the
conditions under which a transition occur in the maneuver
automaton.

As a summary, we can show the current data structure for
the plan:

Plan

- Task 1:
o Vehicle ID
o Maneuver1

 Characteristics:
• ID
• Elemental Type (vehicle)
• Composed Type (console)

 Maneuver Parameters
 Commands

• onEntry
• during
• onExit

 Next Maneuver
 Condition

o Maneuver 2:

o Commands
 onEntry
 during
 onExit

o
- Task 2:

Because we want to allow some flexibility in the tasks
definition it is provided, either by programmatic interfaces, or
providing a language, the ability to create new tasks.

The mission data is stored in an XML document and
complies with the rules defined in the mission schema.

VI. OPERATIONS

This session presents a use case of Neptus in a mission
performed with the Isurus AUV in the Nautical Center in
Montemor-o-Velho in Portugal (Fig. 6).

Fig. 6. Isurus AUV in Montemor-o-Velho Nautical Center, Portugal

Fig. 7. Preparation in MP of Montemor-o-Velho Nautical Center mission

Fig. 8. Tracker Console

Fig. 9. Mission analysis with MRA

In Fig. 7 we see the MP application with the Nautical
Center map and a row maneuver made out of several Goto’s.
In Fig. 8 we see the MC for the tracker application where the
vehicle’s position in the mission execution can be estimated
by acoustics. In Fig. 9 we see the MRA where the mission
executed was reviewed and analyzed.

VII. CONCLUSIONS AND FUTURE WORK

This paper presented the Neptus framework, a mixed-
initiative environment to support the coordinated joint
operation of multiple autonomous and semi-autonomous
vehicles. This framework has been deployed in single vehicle

operations. These range from AUVs, to ASVs, and ROVs. We
are in the process of adding UAV models to the Neptus
database.

The extensions to multiple vehicle operations have been
tested in simulations and the first operational deployments
will take place during the first semester of 2006. To do this we
have used a Publish/Subscribe (P/S) middleware framework to
distribute the framework across a local area network. Future
work includes transfer of control authority among consoles
and operators, and multi-vehicle planning and supervision.

ACKNOWLEDGMENTS

The PISCIS project was funded by Agência de Inovação.
Paulo Sousa Dias and Rui Gomes would like to thank the

financial support of FCT (Fundação para a Ciência e
Tecnologia) in their work.

REFERENCES
[1] Rui Gomes, A. Sousa, S. L. Fraga, A. Martins, J. Borges Sousa and F.

Lobo Pereira, “A new rov design: issues on low drag and mechanical
symmetry”, Today's technology for a sustainable future, OCEANS
Europe 2005, Brest, France, June 20-23, 2005.

[2] IEEE standard for application and management of the systems
engineering process, IEEE Std 1220-1998, Vol., Iss., 22 Jan 1999.

[3] Hydroid Inc., <http://www.hydroidinc.com/> (Janeiro 2006).
[4] Deep Ocean Engineering, <http://www.deepocean.com> (Janeiro

2006).
[5] Naval Postgraduated School,

<http://terra.cs.nps.navy.mil/AUV/workbench> (Janeiro 2006)
[6] XML – Extensible Markup Language 1.0 (Third Edition), W3C

Recommendation 4th February 2004, <http://www.w3c.org/TR/2004/
REC-xml-20040204/> (Janeiro 2006).

[7] Sérgio L. Fraga, João B. Sousa, A. Girard, A. Martins, “An automated
maneuver control framework for a remotely operated vehicle”,
OCEANS, 2001. MTS/IEEE Conference and Exhibition, Vol.2, Iss.,
2001 Pages: 1121-1128 vol.2.

[8] IEEE guide for information technology - system definition - Concept of
Operations (ConOps) document, IEEE Std 1362-1998, Vol., Iss., 19
Mar 1998.

[9] P. Ramos, M. V. Nezves, N. Cruz, F. L. Pereira, “Outfall monitoring
using autonomous underwater vehicles”, International Conference
MWWD 2000 – Marine Waste Water Discharges 2000, Génova, Italy,
pp. 321-331.

[10] Paulo Sousa Dias, R. Gomes, J. Pinto, , S. L. Fraga, G. M. Gonçalves,
J. B. Sousa and F. Lobo Pereira, “Neptus – A framework to support
multiple vehicle operation”, Today's technology for a sustainable
future, OCEANS Europe 2005, Brest, France, June 20-23, 2005.

[11] S. L. Fraga, J. B. Sousa and F. L. Pereira, “User-assisted trajectory
generation for autonomous underwater vehicles”, Marine Technology
and Ocean Science Conf. – OCEANS 2003, San Diego, CA, USA,
September 22-26, 2003, pp. 1234-1239.

[12] Neptus, <http://whale.fe.up.pt/neptus> (Janeiro 2006)
[13] Márcio Correia, Paulo Dias, Sérgio Fraga, Rui Gomes, Rui Gonçalves,

Luís Madureira, Fernando Lobo Pereira, Rui Picas, José Pinto, António
Santos, Alexandre Sousa, João Borges de Sousa, “Operations And
Control Of Unmanned Underwater Vehicles”, Robótica 2005, Coimbra,
Portugal, April 29-1, 2005.

