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Abstract— On this paper we derive the numerical coefficients
for a nonlinear model of new AUV model designed at Oporto
University. This is made using theoretical and empirical meth-
ods as also by adapting the known results from similar AUVs.
We use the derived model on MVS, a simulator which can be
embedded in the loop of the control software, by replacing the
interface with the sensors and actuators.

Index Terms— Underwater Vehicles, Modeling, Simulation

I. I NTRODUCTION

The new autonomous underwater vehicle (AUV) designed
and built at the Underwater Systems and Technology Lab-
oratory (USTL) from Oporto University is a small torpedo
shaped vehicle optimized for a low cost mechanical structure.
The first model was called LAUV. It will be used to test new
control and software methodologies without the concern of
high monetary impact in the case of catastrophic failure.

For most methodologies, the design and tuning of con-
trollers requires a model of the system. On this paper we
calculate the numerical coefficients of a nonlinear model
of the AUV. This is made by resorting to theoretical and
empirical formulas as also by establishing analogies with
models from already tested similar vehicles, namely the
Isurus AUV, a REMUS class vehicle created at the Woods
Hole Oceanographic Institution and customized at the USTL.
Figure I shows both vehicles. This model will allow the
tuning of controllers that will enable the execution of more
interesting in-water tests, such as operation at constant depth,
far from the influence of the surface.

Simulation is a usual way of checking the behavior of the
control system. We describe how the derived model is incor-
porated on MVS. The MVS is a multiple vehicle simulation
system being developed at USTL using the Open Dynamics
Engine (ODE) library. The Open Dynamics Engine is an
open source, high performance library for simulating rigid
body dynamics. It was designed to be used in interactive or
real-time simulation. It is particularly suited for simulating
moving objects in changeable virtual reality environments.
It is composed by a rigid body dynamics simulation and an
optional collision detection engine. It allows the use of other
collision libraries or no collisions detection at all, for better
performance. The development of ODE was started in 2001
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Fig. 1. Isurus (top) and LAUV (bottom) side by side, at USTL.

and it is constantly being enhanced by the online community
of users. It has already been used in many applications (see
[1], for instance) and games. However, we are not aware of
any published work concerning submarine simulation.

Finally we describe the incorporation of the MVS on the
vehicle’s on-board software. Basically, the MVS must replace
the interface with the physical sensors and actuators. The ob-
jective of this approach is to allow a single implementationof
the control software to function unmodified in both real-life
and simulated environments. Most design cycles involve the
test of different control laws or navigation schemes. In most
cases the control system must be replicated in a simulation
environment, usually on a different language. Even when that
is done correctly, it is difficult to keep consistency between
that implementation and the final control system which may
be subject to updates from other sources. Instead of writing
separate code for a prototyping environment and then for
the final version, our approach allows the employment of
the stable/final software in the overall design cycle.

The paper is organized as follows. In section II we review
the nonlinear model structure usually employed for AUVs,
with some remarks for the particular configuration of the
torpedo shaped vehicles. In section III we derive the actual
coefficient values for the LAUV model. We discuss steady
state operation and the sensitivity of the model to certain
parameters. In section IV we describe the implementation
of the simulator. Finally, on section V we present the
conclusions.

II. V EHICLE’ S MODEL

Autonomous underwater vehicles (AUV’s) are best de-
scribed as nonlinear systems (see [2] for details). In order
to define the model, two coordinate frames are considered:
body-fixed and earth-fixed. In what follows, the notation
from the Society of Naval Architects and Marine Engineers



(SNAME) [3] is used. The motions in the body-fixed frame
are described by 6 velocity componentsν = [νT

1 ,νT
2 ]T =

[u,v,w, p,q,r]T respectively, surge, sway, heave, roll, pitch,
and yaw, relative to a constant velocity coordinate frame
moving with the ocean current. The six components of
position and attitude in the earth-fixed frame areη =
[ηT

1 ,ηT
2 ]T = [x,y,z,φ ,θ ,ψ]T . The earth-fixed reference frame

can be considered inertial for the AUV.
The velocities in both reference frames are related through

the Euler angle transformation

η̇ = J(η2)ν (1)

with

J(η2) =

[

J1(η2) 0
0 J2(η2)

]

J1(η2) =





cψcθ (cψsθsφ −sψcφ) (sψsφ +cψcφsθ)
sψcθ (cψcφ +sφsθsψ) (sθsψcφ −cψsφ)
−sθ cθsψ cθcφ





J2(η2) =





1 sφ tanθ cφ tanθ
0 cφ −sφ
0 sφ

cθ
cφ
cθ





The equations of motion are composed of the standard
terms for the motion of an ideal rigid body and, additionally,
the terms due to hydrodynamic forces and moments. The
usual approach to model the hydrodynamic terms is to con-
sider three main effects: restoring forces, the simplest one,
which depends only on the vehicle weight, buoyancy and rel-
ative positions of the centers of gravity and buoyancy; added
mass, which describes pressure induced forces/moments due
to forced harmonic motion of the body; and damping, caused
by skin friction (laminar and turbulent) and vortex shedding.
Usually the elements of the damping matrix are defined so
that linear and quadratic components arise (e.g.,Xu +Xu|u||u|
for D11).

The hydrodynamic damping and added mass are very hard
to describe accurately. They can be estimated by usually
expensive hydrodynamic tests but a frequent alternative is
the employment of heuristical formulas, an approach which
trades-off accuracy by simplicity.

In the body-fixed frame the nonlinear equations of motion
are:

Mν̇ +C(ν)ν +D(ν)ν +L(ν)ν +g(η) = τ (2)

where M is the constant inertia and added mass matrix of
the vehicle,C(ν) is the Coriolis and centripetal matrix,D(ν)
is the damping matrix,L(ν) is the lift matrix (some authors
include these terms on the damping matrix),g(η2) is the
vector of restoring forces and moments andτ is the vector of
body-fixed forces from the actuators. If the vehicle’s weight
equals its buoyancy and the center of gravity is coincident
with the center of buoyancy,g(η2) is null. Additionally,
for an AUV with port/starboard, top/bottom and fore/aft
symmetries,M andD(ν) are diagonal.

The considered AUVs are not fully actuated. There is a
propeller for actuation in the longitudinal direction and fins

for lateral and vertical actuation. This mechanical configura-
tion leads to a simpler dynamic model.τ depends only on 3
parameters: propeller velocityn (0 < n ≤ nmax), horizontal
fin inclination δs (−δsmax ≤ δs ≤ δsmax) and vertical fin
inclination δr (−δrmax ≤ δr ≤ δrmax). The dynamics of the
thruster motor and fin servos are generally much faster than
the remaining dynamics therefore, for the purposes of this
work, they can be excluded from the model. We also consider
that the vehicle is port/starboard and bottom/top symmetric
in shape. For safety reasons, the vehicles usually are slightly
buoyant. The center of gravity is slightly below the center
of buoyancy, providing a restoring moment in pitch and roll
which is useful for these underactuated vehicles.

III. LAUV MODEL

The Light Autonomous Underwater Vehicle (LAUV) is
a low-cost submarine for oceanographic and environmental
surveys designed and built at USTL. It is a torpedo shaped
vehicle, with a length of 108cm, a diameter of 15cm and
a mass of approximately 18kg. The actuator system is
composed of one propeller and 3 or 4 control fins (depending
on the vehicle version), all electrically driven. It has a
miniaturized computer system running the control system
software. It uses an IMU unit, a depth sensor and LBL system
for navigation. The maximum expected velocity is 2m/s.

Since our modeling methodology will be based on the
results gathered for another AUV, Isurus, we will make a
brief review of those results. The Isurus AUV is a REMUS
class vehicle customized at the USTL. It is a torpedo-shaped
AUV weighting approximately 50kg vehicles and with a
length of 1.4 meters. For the Isurus AUV, the values of
the coefficients were derived using results from the literature
and from our field experiments. The added mass terms were
computed using heuristic formulas for an ellipsoidal body,
as described in [2]. This is an acceptable approximation
for this kind of vehicle’s shape. The values did not differ
significantly from those derived with strip theory in [4],
where a similar AUV is analyzed. For the quadratic cross-
flow drag coefficients we used the values derived in [4].
For the linear drag coefficients we used the results of our
field experiments, namely the circle test using the procedure
described in [2]. Notice that due to the symmetries of the
vehicle, some of the coefficients affecting the motion on the
vertical plane are the same as those affecting the motion on
the horizontal plane.

For the inertia and added mass matrix of the LAUV, a
ellipsoidal form is assumed, the same way as was done for
Isurus. Like Isurus, in normal operation, this AUV does not
have any form of direct actuation over the roll dynamics.
Therefore, roll stabilization is performed in a passive fashion,
by lowering the center of gravity relatively to the center of
buoyancy, in order to create a restoring moment. The origin
of the body fixed referential is the center of buoyancy and
zG = 0.01m is the distance from the origin to the center of
gravity. For simplicity, we assume that the mass is distributed
in such a way that the inertia tensor of the vehicle can be



approximated by that of an prolate ellipsoid. Therefore:

M =

















m−Xu̇ 0 0 0 mzG 0
0 m−Yv̇ 0 −mzG 0 0
0 0 m−Zẇ 0 0 0
0 −mzG 0 Ix −Kṗ 0 0

mzG 0 0 0 Iy −Mq̇ 0
0 0 0 0 0 Iz −Nṙ

















M =

















19 0 0 0 0.18 0
0 34 0 −0.18 0 0
0 0 34 0 0 0
0 −0.18 0 0.04 0 0

0.18 0 0 0 2.1 0
0 0 0 0 0 2.1

















The inertia moment of a prolate ellipsoid with uniformly
distributed massm along the body fixedy andz axis, is given
by m(L2/20+ r2/5), whereL is the length of the ellipsoid
and r is its largest sectional radius. Just for comparison,
the inertia moment of a cylinder enclosing the described
ellipsoid is given bym(L2/12+r2/4) . For the actual vehicle
dimensions, the values for the ellipsoid are 60% of those
obtained for the cylinder. For the Isurus vehicle, the true
value is somewhere between the two cases but closer to
that of the ellipsoid, therefore we rounded up the obtained
value. The added mass terms were calculated using the
ellipsoid formulas in[2]. We neglect the added mass terms
that would arise due to the asymmetry between the nose
and tail (Yṙ = −Zq̇,Nv̇ = −Mẇ)). Our experience with the
simulation model of the Isurus shows that the impact is
minimal.

In what concerns the restoring terms, the vehicle will be
slightly buoyant, withW −B = −1N, whereW = 176N is
the vehicle’s weight andB is the vehicle’s buoyancy force.
Therefore:

g(η2) =

















(W −B)sinθ
−(W −B)cosθ sinφ
−(W −B)cosθ cosφ

zGW cosθ sinφ
zGW sinθ

0

















The damping matrix has the following expression:

D(ν) = −

















Xu 0 0 0 0 0
0 Yv 0 0 0 Yr

0 0 Zw 0 Zq 0
0 0 0 Kp 0 0
0 0 Mw 0 Mq 0
0 Nv 0 0 0 Nr

















−

















Xu|u||u| 0 0 0 0 0
0 Yv|v||v| 0 0 0 Yr|r||r|
0 0 Zw|w||w| 0 Zq|q||q| 0
0 0 0 Kp|p||p| 0 0
0 0 Mw|w||w| 0 Mq|q||q| 0
0 Nv|v||v| 0 0 0 Nr|r||r|

















In this case, the considered symmetries are top/bottom
and port/starboard. The asymmetry between the tail, which

contain the fins, and the nose make the damping matrix
non-diagonal. Even so the vehicle’s symmetries allow us
the following simplifications:Yv|v| = Zw|w|, Nv|v| = −Mw|w|,
Yr|r| = −Zq|q|, Nr|r| = Mq|q|. The same relations apply to
the linear damping terms:Yv = Zw, Nv = −Mw, Yr = −Zq,
Nr = Mq. Concerning the actual coefficient values, we will
use the normalized hydrodynamic derivatives from the Isurus
model, due to the strong similarity between the form of the
two vehicles. For the coefficients related to forces due to
linear velocities or to moments due to angular velocities
we will have relations such asXu|u| = ρ

2U0L2X ′
u|u|, where

X ′
u|u| is the normalized coefficient; for forces due to angular

velocities or moments due to linear velocities the relations
will be like Yr|r| =

ρ
2U0L3Y ′

r|r|. The typical velocity for this
vehicle will beU0 ≃ 1.5m/s. Thus, the damping matrix has
the following numeric values:

D(ν) =

















2.4 0 0 0 0 0
0 23 0 0 0 −11.5
0 0 23 0 11.5 0
0 0 0 0.3 0 0
0 0 −3.1 0 9.7 0
0 3.1 0 0 0 9.7

















+

















2.4|u| 0 0 0 0 0
0 80|v| 0 0 0 −0.3|r|
0 0 80|w| 0 0.3|q| 0
0 0 0 6×10−4|p| 0 0
0 0 −1.5|w| 0 9.1|q| 0
0 1.5|v| 0 0 0 9.1|r|

















Notice that, for low velocities, the quadratic terms, e.g.
Yv|v||v|, may be considered negligible.

We consider lift forces and moments due to the fin surfaces
and also due to the body surface. For a in-depth description
of this terms see, for instance, [5].

The numeric values for the body lift force and moment
coefficients (Yuvb = Zuwb and Nuvb = −Muwb) were obtained
using the following formulas, whereCLB = 1.24 is an empir-
ical coefficient which depends on body length and diameter:

Zb = −
1
2

ρπ(
d
2
)2CLBuw (3)

Mb = −(−0.65L− xB)Zb (4)

The term 0.65L is an empirical formula for the center of
pressure, the point where the body lift forces are applied[5];
xB = −0.4m is the position of the center of buoyancy
relatively to the nose of the vehicle.

The LAUV will have two versions: one with a four fin tail
(two vertical and two horizontal), the one considered here,
and another version with a three fin tail (one vertical and
the other two at±120 degree from the vertical one). The
empirical formulas for the pitch fin’s lift force and moment
are presented below (S f in = 64cm2 is the fin’s face area,
x f in = −40cm is the position of the fin relatively to the
center of buoyancy andCLF = 3 depends essentially on the



geometrical aspect of the fin):

Z f = −
1
2

ρCLF S2
f in(u

2δ f in +uv− x f inuq) (5)

M f = −x f inZ f (6)

The formulas for the rudder fin force and moment are
analogous.

Therefore the lift matrix comes as follows:

L(ν) =













0 0 0 0 0 0
0 −20.6 0 0 0 3.84
0 0 −20.6 0 −3.84 0
0 0 −6 0 −1.53 0
0 6 0 0 0 −1.53













Taking in account all above mentioned assumptions, we
define the matrixC(ν) with the Coriolis and centripetal terms
(including the effect of the added mass):

C(ν) =

[

0 C12(ν)
C21(ν) C22(ν)

]

with

C12(ν) =





mzGr (m−Zẇ)w −(m−Yv̇)v
−(m−Zẇ)w mzGr (m−Xu̇)u

−mZG p+(m−Yv̇)v c1232 0





c1232 = −mZGq− (m−Xu̇)u

C21(ν) =





−mzGr (m−Zẇ)w mZG p− (m−Yv̇)v
−(m−Zẇ)w −mzGr mZGq+(m−Xu̇)u
(m−Yv̇)v −(m−Xu̇)u 0





C22(ν) =





0 (Iz −Nṙ)r −(Iy −Mq̇)q
−(Iz −Nṙ)r 0 (Ix −Kṗ)p
(Iy −Mq̇)q −(Ix −Kṗ)p 0





The actuator system is modelled in the following way:
we assume that the propeller creates a constant thrust force
Xprop, in order to keep the desired steady state surge. The
induced roll moment, due to the thrust force, is given by
−0.06Xprop. The force and moments created by the fins
are calculated using Equations 5 and 6. The respective
coefficients’s values areYuuδr = −Zuuδs = 9.6 and Nuuδr =
Muuδs = −3.84.

A. Linear damping

Some of the models found in the literature, e.g. [6], [7],
[8], [9], do not consider the linear damping termsXu, Zw,
etc. This terms are mainly due to laminar skin friction
[2] and may play an important role in the design of the
control system, namely in the local stability analysis. For
low velocities scenarios, such as when regulating to constant
depth, the quadratic damping terms become very small. If the
linear damping is ignored, the linearization of the system
model around the equilibrium point may falsely reveal a
locally unstable system. This leads the control system de-
signer to counteract, generally by adding a derivative action,
i.e., linear damping in the form of velocity feedback. In
practice, this will lead to a conservative design, since the
overlooked damping terms contribute to system stability. In
fact, it is possible to find examples in the literature where the

authors perform a worst case analysis, by totally disregarding
the damping matrix [10], [11]. While our field experience
reveals that it is possible to perform depth regulation of the
Isurus vehicle using a cascade of two proportional-integrative
controllers, the analysis of the linearized models with null
linear damping pointed out the mandatory use of derivative
action (in the present case, the feedback of the state variable
q).

When designing low cost vehicles, it is of interest to
use the smallest and cheapest possible set of sensors. Thus,
assuming no direct velocity measurement is made, even a
velocity estimate may become problematic if some of the
sensors present appreciable measurement errors or noise.
This illustrates the importance of a correct estimation of the
linear damping terms.

The analysis was made by applying the Routh-Hurwitz
method to the characteristic polynomial of the linearized
system and taking in account the Lyapunov’s linearization
method (LLM). The LLM is based on the following theorem
(see, e.g., [12]):

• If the linearized system is strictly stable, then the
equilibrium point is asymptotic stable (for the actual
nonlinear system).

• If the linearized system is unstable, then the equilibrium
point is unstable (for the nonlinear system).

• if the linearized system is marginally stable, then one
cannot conclude anything from the linear approxima-
tion.

We considered the following linearized model of the
AUV’s pitch motion, already including a state feedback
scheme similar to a proportional-integrative-derivativecon-
troller, wherekθ p is the proportional action’s gain,kθ i is the
integrative action’s gain andkθq is the derivative action’s
gain:

ẋ =









0 0 1 0
a21−b2kθ p a22 a23−b2kθq b2kθ i

a31−b3kθ p a32 a33−b3kθq b3kθ i

−1 0 0 0









x

+
[

0 b2kθ p b3kθ p 1
]T θre f (7)

with ẋ =
[

θl wl q eθ i
]

Through the analysis of the characteristic polynomial
associated to Equation 7, using the respective numerical
coefficients, we conclude that it is not possible to stabilize
the system either with proportional control or proportional-
integrative control when no linear damping is considered.

In fact, from the open-loop analysis, we verify the exist
of a limit-cycle: for small velocities there is not enough
damping to stabilize the system but, as velocities increases,
the quadratic terms.|.| stabilize the system.

B. Model analysis

The main focus of our analysis will be on depth operation
thus, in what follows we consider operation on a vertical
plane, with negligible roll. Therefore, we will havey = φ =



ψ = v = p = r = 0. Thus, based on [2], the dynamic model
of the AUV becomes:

(m−Xu̇)u̇+mzgq̇ =− (W −B)sinθ +Xuu

+Xu|u|u|u|+(Xwq −m)wq

+Xqqq2 +Xprop (8)

(m−Zẇ)ẇ−Zq̇q̇ =(W −B)cosθ +Zuwuw

+(Zuq +m)uq+Zww

+Zw|w|w|w|+Zqq+Zq|q|q|q|

+mzgq2 +Zuuδsu
2δs (9)

mzgu̇−Mẇẇ+(Iyy −Mq̇)q̇ =− zgW sinθ +Muwuw+Muquq

+Mww+Mw|w|w|w|−mzgwq

+Mqq+Mq|q|q|q|

+Muuδsu
2δs (10)

The choice of nonzero coefficients reflects the symmetries
considered for the AUVs.

In order to obtain the earth-fixed coordinates, the following
kinematic relation is employed:

ż =−sinθu+cosθw (11)

θ̇ =q (12)

wherez(t) is the depth of the vehicle (positive downwards)
andθ(t) is the vehicle’s pitch angle (positive “upwards”).

In what follows, we calculate the steady state values ofu,
w andθ for different values ofδs. At any equilibrium point
we have the following equations:

0 =− (W −B)sinθ +Xuu+Xu|u|u|u|+Xprop

0 =(W −B)cosθ +Zww+Zw|w|w|w|

+Zuwuw+Zuuδsu
2δs

0 =− zgW sinθ +Mww+Mw|w|w|w|

+Muwuw+Muuδsu
2δs

Notice that by the definition of equilibrium point (ẋ = 0)
and sinceθ̇ = q, one can conclude that the value ofq at any
equilibrium point is zero.

We solve the system of three equations using numerical
methods.

The solution of these equations is useful for an accurate
model linearization but they can also be employed to perform
useful steady state analysis. For instance, at this stage we
are not sure of the exact final location of the center of
gravity, since different hardware arrangements will be tested.
In section III we consideredzG = 1cm. Table I shows the
steady state values of the state variables, as also the linearized
system’s poles, for different values ofδs considering the
assumed value. If we assume that the center of gravity is
lowered tozG = 3cm, the behavior of the vehicle is slightly
different, as shown on Table II. As expected, since the
opposing restoring moment is higher, higher actuation values
are needed in order to achieve a certain pitch angle. However,
the numeric results of both tables give us a good estimative

δs u w θ(o) ż poles
-0.16 1.54 0.057 81.3 -1.51 -0.000,-1.27,-6.35
-0.1 1.52 0.027 45.5 -1.07 -0.124,-1.10,-6.24
-0.05 1.47 0.001 14.3 -0.36 -0.210,-0.954,-6.11
-0.018 1.45 -0.012 -0.3 0.00 -0.224,-1.00,-6.07

0 1.43 -0.018 -7.7 0.17 -0.224,-1.03,-6.05
0.05 1.40 -0.034 -26.9 0.60 -0.205,-1.10,-6.01
0.1 1.37 -0.045 -46.4 0.96 -0.163,-1.18,-5.99
0.16 1.34 -0.053 -80.9 1.31 -0.059,-1.25,-6.02

TABLE I

EQUILIBRIUM POINT FOR DIFFERENT VALUES OFδs , WITH zG = 1cm

δs u w θ(o) ż poles
-0.26 1.52 0.085 42.3 -0.96 -0.52,-1.13,-6.11
-0.16 1.49 0.043 21.4 -0.50 −0.78±0.28i,-5.93
-0.1 1.47 0.020 11.9 -0.28 −0.75±0.36i,-5.86

-0.016 1.45 -0.013 -0.4 0.00 −0.74±0.39i,-5.80
0 1.43 -0.018 -2.5 0.05 −0.76±0.38i,-5.80

0.1 1.42 -0.051 -15.7 0.33 −0.82±0.29i,-5.78
0.16 1.40 -0.069 -23.2 0.49 −0.85±0.20i,-5.79
0.26 1.38 -0.095 -35.8 0.73 -0.63,-1.13,-5.81

TABLE II

EQUILIBRIUM POINT FOR DIFFERENT VALUES OFδs , WITH zG = 3cm

of the quantitative impact of the variation of the center of
gravity.

IV. SIMULATION

On this section we describe the implementation of the
LAUV model on the simulator (MVS) and the incorporation
of the MVS on the LAUV’s on-board software. It must
be remarked that, thanks to the software architecture, the
software can be executed on different kinds of computers
and operating systems, as described later.

As stated in the introduction, the MVS is based on the
ODE. The ODE will solve the following equation.

MRBν̇ = −Maν̇ −C(ν)ν −D(ν)ν −L(ν)ν −g(η)+ τ

The force (and moments, if convenient) terms of the second
member must be input to the library as described below.

The ODE engine allows different types of numerical
solvers. However, at this phase of the development, the
developers recommend the fixed step solver. Therefore, the
integration of the equations of motion is performed by a first
order algorithm (Euler) with a step size of 0.01 seconds.

For this simulation we choose not to use any collision
detection, as it’s a one vehicle simulation. This improves
the overall simulation performance, reducing the calculations
required at each time step.

The algorithm starts with creation of a dynamic world
where the global properties (like gravity and correction
factors) are defined, and the world building takes place (ob-
stacles and world boundaries creation). This world’s structure
can be changed while the simulation is running. The vehicle’s
initial state is defined and then the simulation loops until
termination, performing the following steps: a) apply forces
to the vehicle (thrust, fins); b) take simulation step; c) read
vehicle’s position, orientation and velocity;



In what concerns AUV modeling, the hydrodynamic forces
and moments must be provided to the library at each step
since these effects are not calculated by the ODE engine.
Additionally, the actuation must also be applied. The ODE
library provides primitives that allow the application of
forces at any specified point of the body fixed referential.
This way, if the point of application of the force is specified
(the default is the center of gravity) the ODE calculates the
respective moment. For instance, in the case of the fins, we
only provide the produced force and the position of the fin
relatively to the center of gravity. The same applies to the
restoring forces. However, in other cases, as for the damping
matrix, the forces and moments are provided assuming the
center of gravity as the origin of the body fixed referential.

In order to mimic overall system operation, the LAUV
simulator is embedded in the AUV control software. When
the simulator component is enabled, apart from simulating
world and body physics, it takes the place of the sensors and
actuators. In what follows we describe the implementation
of the simulator in the LAUV’s on-board software. For that
end, we make a brief description of the software architecture.

Running on top of the computational system is the op-
erating system Linux with real-time preemptive scheduling
and the LAUV’s on-board software DUNE (DUNE: uniform
navigational environment), which is also used in ROV and
ASV class vehicles [13]. At the core of DUNE sits a
platform abstraction layer, written in C++, enhancing porta-
bility among different computer architectures and operating
systems.

DUNE attains loose coupling between components by
partitioning related logical operations into isolated sets (or
Tasks in DUNE’s nomenclature). Tasks are executed in a
concurrent or serialized fashion and may also be grouped into
single concurrent or serialized execution entities. Usually
several concurrent and serialized execution tasks will coexist
within DUNE. Tasks can be started or terminated at any time
during DUNE’s execution period.

Communication and synchronization between tasks is
achieved by the exchange of messages using a lock-free/wait-
free message bus. The internal message format is also
used for logging purposes and communicating with external
software modules over network links. As no restrictions are
imposed by DUNE’s core on the source and destination of a
message, tasks may be scattered among different networked
computers working together to achieve the same goal.

For the first in-water tests, proportional-integrative con-
trollers for heading and depth were implemented. These
controllers were packaged as simple periodic tasks with the
ability of receiving and updating their parameters at run-time.

Finally, the LAUV simulator is implemented by wrapping
MVS in a DUNE’s non-intrusive periodic task. To keep
the real-time synchronization and the simulation’s behaviour
stable and predictable, we use a time accumulator. Therefore
the effect of cumulative time errors is eliminated. Because
of DUNE’s distributed capabilities the simulator may run
on the LAUV’s computational system, sharing CPU with
other controllers, or offloaded to a separate computer (visible

via network) relieving LAUV’s computational system. Either
way simulation results are identical. The LAUV’s computa-
tional system consists of a Intel XScale PXA255 processor
at 400MHz, mounted on a dedicated SBC (Single Board
Computer), and additional modules to interface with the
vehicle’s sensors and actuators. When running the simulation
application, the software uses 11% of the CPU’s processing
power. This shows that the current model can be simulated
faster than real-time even on relatively modest CPU.

V. CONCLUSIONS

The simulation of the derived model has shown results
that are consistent with the expected behavior of the vehicle.
However, due to the uncertainty on some of the coefficients,
such as those associated with the drag effects, the model
can only be validated with the underwater tests that will be
performed in a very short term. On the other hand, most
of the other coefficients of the considered model can be
estimated accurately by the described methods. Therefore,
we already used this model to study the sensitivity of the
vehicle’s behavior to certain model coefficients. This analysis
is important on the design of robust controllers.
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