
Real time projection of video images in virtual
scenarios

Rui Gonçalves
FEUP LSTS

Rua Dr. Roberto Frias
4200-465 Porto

Portugal
Phone +351 22 508 1539

Fax +351 22 508 1443
E-Mail rjpg@fe.up.pt

A. Augusto de Sousa
FEUP/INESC Porto

Rua Dr. Roberto Frias
4200-465 Porto

Portugal
Phone +351 22 508 1827

Fax +351 22 508 1443
E-Mail aas@fe.up.pt

Gil Gonçalves
FEUP LSTS

Rua Dr. Roberto Frias
4200-465 Porto

Portugal
Phone +351 22 508 1690

Fax +351 22 508 1443
E-Mail Gil@fe.up.pt

João Sousa
FEUP LSTS

Rua Dr. Roberto Frias
4200-465 Porto

Portugal
Phone +351 22 508 1690

Fax +351 22 508 1443
E-Mail jtasso@fe.up.pt

Paulo Dias
FEUP LSTS

Rua Dr. Roberto Frias
4200-465 Porto

Portugal
Phone +351 22 508 1539

Fax +351 22 508 1443
E-Mail pdias@fe.up.pt

Abstract

There are many applications that map the reality onto virtual environments, through
the projection of real images. One of the most popular examples is Google Earth
which is applied to geography and other examples include Nasa World Wind, and
3D scanners applications. Implicit in these methods is a perfect alignment in the
camera positioning between the real and the virtual worlds. This paper presents a
generic algorithm to be applied in the context of robotics, more precisely in
underwater vehicles (ROVs-Remote Operated Vehicles) equipped with video
cameras and used for inspections of underwater infrastructures. The method uses
the images and position data of the vehicle to map the virtual objects representing
the infrastructures. We are also planning to use this technology, in unmanned
aerial vehicles (UAVs) to produce terrain mapping in a personalized way for a
limited area.

1. Introduction

The projection method we present consists on identify which virtual objects are in
the depth of view of a camera and map them with the respective projected image in
an adequate way. There is a source (or focus) from where the image is propagated
until it intercepts the objects. When not done in real time, it is usual to see this
functionality implemented with the renderer technique ray-tracing (e.g. in 3D-
Studio, Lightwave, POVRay, etc.). In ray-tracing the projection of images drifts
naturally, once this method of rendering seats intensively on calculations of
geometric intersections between light rays and objects. The problem is the
significant difficulty to apply this technique in real time, since it is very CPU
consuming.

In real time applications, there has been a trend to simulate the projection effect.
Some techniques are implemented using overlapping of textures (multi-texturing)
by hardware [UENG] which normally have a limited texture layers and causes an
implicit constrain to the number of projections.

We are applying a method where the projected image is able to remain correctly
placed and deformed without great computational burden. This method adds a new
3D object (polygons) to the scene being similar to the stencil shadows technique
used to project shadows by means of „shadow polygons“. The projection creates a
new grid object that adapts near to the surface of the existing objects.
The grid projection object has a settable resolution for different accuracy in the
adaptation. The grid segmentation also addresses the issue of perspective
correction, as will be explained. This solution may not work well if the objects that
are receiving the projection are too complex or with discontinuous surfaces. We
intend to use this functionality in simple objects representing walls, pillars and
terrain superficies. The framework receiving this functionality is being developed (in
Java/Java3D) to work in any common PC at real time mission processing.

Figure 1: The grid projection object generated using the ROV position data sensors

2. Project Main Goals

The algorithm has applicability in the framework Neptus [NEPTUS06; NHOME]
which main function is to support the coordinated operation of heterogeneous
teams, including autonomous and remotely operated underwater, surface, land,
and air vehicles and people. This framework is being developed at the Decision
and Control Group Engineering (DCEG) of the Department of Electrotecnic
Engineering and Computers (DEEC) in the Engineering Faculty of Porto University.
The work is fit in the activities at one of the laboratories, the Underwater Laboratory
of Systems and Technology (USTS).

This framework (Neptus) has one package of components for three-dimensional
visualization. For each mission to be performed it is always constructed a 3D virtual
representation of the mission site in question. To construct the 3D virtual
environment it is used the Mission Planner application (Figure 2) specific editor,
derived from the Neptus framework. Neptus uses a XML format to define geo-
referenced maps. Besides the basic geometrics types used by this editor (e.g.
parallelepipeds, cylinders, ellipsoids, planes, terrain objects generation …), 3DS,
VRLM, X3D and Java3D file formats can be placed inside Neptus maps. Objects
can be covered with generic textures (metal, rock…) normally representing
structures to inspect that are visually unknown.

Figure 2: Map Editor at top, ROV console at bottom left and ROV real image

Once a generic 3D map of the area is constructed, vehicles equipped with cameras
to verify the structures are used during the mission. For the area corresponding to
figure 2 “Porto de Leixões”, it was used a ROV type vehicles and video images of
the submerged walls have been collected. Later, a revision of video data is made
to find any problem in the inspected structure, through a less practical search, in
the recorded film. Comparing the film time with the ROV positioning logs over the
time it is known an approximate localization of any defect found [MRA06].

The goal of this work consists in defining a way to map the video image in the 3D
environment, making it possible to map virtual walls and others structures with
textures obtained from the caught image of video. This way it is possible to see the
real wall image in the 3D environment with manipulation in real time instead of
searching in the video stream.

3. System Description

the Neptus framework has a sub application to mount monitoring/control consoles
by placing and configuring Real Time information panels (compass panel, motors
panel, sensor panels, video panel, Renderer3D panel …).This panels can be
developed and added to Neptus framework as plug-ins.

For the video projection functionality it is intended that the users have a simple
interface in the Renderer3D panel to associate one video panel, placed in the
console, to one vehicle in the Renderer3D panel (the consoles can be created to
monitor several vehicles in simultaneous). The Renderer3D panel plug-in makes
use of the Neptus framework API to list and access the video panels present in the
console. This way the Renderer3D does not connect directly to the hardware video
capture devices but only to the existing video panels in the console to extract the
frames images. While the video images are fed, to video panels, using capture
devices the state of the vehicles (position and attitude) comes through the network
interface. Whenever a vehicle state message arrives to the console the projection
object have to be reformulated and in a optional refresh rate the video texture has
to be actualized on the this projection object. Notice that there is no synchrony
between the data state of the vehicles and the video images arrived to the
consoles.

Figure 3: Class diagram of the base architecture for the video projection
implementation.

In Figure 3 the Renderer3D class centralizes all the functionalities related to 3D
viewing and has all data related to the virtual world. It has an interface to
add/remove map objects and actualize the vehicle positions information
(VehicleState). The ProjectionObj class keeps the information related to the grid
projection object. The TimeBehavior class work as a timer, initialized in the 3D
engine, that calls periodically the refreshVideoMap() method of the ProjectionObj
class to ask the VideoPanel for a new Frame and change the texture. The
VideoPanel class represents the Video panels placed in the console.

3.1 Positioning the vehicle

The method to extract the vehicle positioning, in underwater environment, is
considered a complex issue to overcome. The position detection process is made
by sonar triangulation. The estimated data state position of the vehicle can be
elevated up to 10Hz in a reliable way, after applications of filters. The attitude data

is simpler to extract and it is made by an IMU sensor. All this data is combined in a
single message and send to the consoles (ground station) through an “umbilical
cable” that directly connects the vehicle to the Neptus console. In UAV’s vehicles
type the positioning is made by GPS sensors and transmitted by WIFI.

3.2 Capturing video images

Neptus framework uses the Java Media Framework API to connect with the video
capture devices. The video capture frequency depends on the device type. For
video signal conversion from the ROV camera to digital format it is proximally
20Hz. In the console component panel, using JMF API, it is possible to ask any
time for the current video frame of the component. The frame is easily converted to
a texture and used by the Neptus 3D engine. Notice this video plug-in component
work in Windows and Linux (as well as the rest of the system).

3.3 Java3D implementation

The Neptus Framework 3D base engine used is Java3D in retained mode that
means we have a graph representing the scene (for more details see [JAVA3D]).
The projection algorithm makes use of the Java3D functionalities for the
interceptions calculations. To build the grid projection object we used the
utils.picking.PickTool Java3D class that allows us to define an origin and direction
of a ray to return the interception point in the 3D world. The objects in the scene
graph of the Java3D engine have to be assigned with the ALLOW_INTERSECT
flag property on. This way we can select the objects that are able to receive
projections. The PickTool object must also be set to work in PickTool.GEOMETRY
mode. That means the interceptions are made using the objects polygons and not
by its bounding boxes (by default).

To minimise the CPU usage, in the interceptions calculations, the grid projection
resolution should be as low as possible. If the projection is made into a plan object
the grid can be reduced to four points only, generated by four rays. But if the
projection angle, in the plan object, is too different from the normal vector of the
plan the resolution should be sufficient high to make the perspective correction of
the video images (Figure 4). Also if the object receiving the projection is irregular
(i.e. terrain object) the resolution should be high enough to make a perfect
adaptation of the grid projection.

Figure 4: Grid segmentation used to make the perspective correction when the
video image is projected.

For the video texture image refreshing in the projection object was created a
Java3D behavior class. This type of Java3D objects are nodes used in the scene
graph to make dynamic operations automatically by the engine. Our TimeBehavior
(Figure 3) class, extended to Java3D Behavior, is simply used to inform the
ProjectionObj class to periodically actualize the texture with the video image in
synchrony with Java3D render rate.

4. Conclusion and future work

The presented method is the first solution for this functionality applied in
Neptus,where the speed limitation in the interception calculation has been
consider. The stencil shadow volumes algorithm, normally applied in shadows
creation, is being studied for the possibility of implementation and adaptation in
Java3D to produce the video projections in more complex and irregular objects.
Others engines with support to produce shadows by default are being considered
as well, like JavaMonkeyEngine [JME]. In the near future the presented method will
be tested in UAVs type of vehicles that are being developed at USTL (another
approach in [SOIA04]).

5. References

[JAVA3D] “Java3D Home Page ” 2007,
 <http://java.sun.com/products/java-media/3D/>

[NEPTUS06] J. Pinto, Dias, P.S., R. Gonçalves, G. M. Gonçalves, J. B. Sousa and

F. Lobo Pereira (2006), Neptus – A Framework to support the
Mission Life Cycle. In: IFAC 2006 The 7th Conference on
Manoevring and Control of Marine Craft, Lisbon, Portugal,
September 20-22.

[NHOME] Neptus Framework, <http://whale.fe.up.pt/neptus/>

[NPS] Lee, C. S. (2004), NPS AUV Workbench: Collaborative Environment

for Autonomous Underwater Vehicles (AUV) Mission Planning and
3D Visualization. MSc Thesis, Naval Postgraduate School,
Monterey, U.S.A., March 2004

[MRA06] Dias, P. S., J. Pinto, G. M. Gonçalves, R. Gonçalves, J. B. Sousa

and F. Lobo Pereira (2006b), Mission Review and Analysis. In:
Fusion 2006 The 9th International Conference on Information
Fusion, Florence, Italy, July 10-13.

[PEARTH] Pict’Earth, <http://www.pict-earth.com/>

[SOIA04] Henri Eisenbeiss (2004), A mini Unmanned Aereal Vehicle (UAV):

System Overview and Image Acquisition. International Workshop on:
Processing and Visualization using High-Resolution Imagery,
Pitsanulok, Thailand, November 18-20.

[UENG] UnrealEngine,

<http://udn.epicgames.com/Two/ProjectorsTableOfContents.html>

http://java.sun.com/products/java-media/3D/
http://whale.fe.up.pt/neptus/
http://www.pict-earth.com/
http://udn.epicgames.com/Two/ProjectorsTableOfContents.html

