
Neptus – A Framework to Support Multiple Vehicle Operation

Paulo Sousa Dias Rui M. F. Gomes José Pinto
Sérgio Loureiro Fraga Gil M. Gonçalves João Borges Sousa

 Fernando Lobo Pereira

LSTS – Underwater Systems and Technology Laboratory
Faculdade de Engenharia da Universidade do Porto

Rua Dr. Roberto Frias s/n
4200-465 Porto, Portugal

{pdias,rgomes,zepinto,slfraga,gil,jtasso,flp}@fe.up.pt

Abstract - This paper describes the development of a C3I
(Communications, Command, Control and Intelli-
gence/Information) infrastructure, taking place at the
Underwater Systems and Technology Laboratory (LSTS) of
FEUP. This infrastructure, the Neptus framework, goal is to
support the coordinated operation of heterogeneous teams,
which include autonomous and remotely operated underwater,
surface, land, and air vehicles and people. People perform a
fundamental role, not only in the case of remotely operated
vehicles, but also with autonomous vehicles where
mix-initiative operation is a requirement. The operational
scenarios for these teams are mainly environmental
monitoring missions but could also include environmental
disaster scenarios, rescue missions, etc. The Neptus
distributed architecture is service oriented, which enables
high degrees of interoperability between applications, of
scalability (number of nodes), and of reconfiguration (number
and type of nodes).

Keywords: Control Networks, Middleware, Systems

analysis and models development, Systems Engineering,
Systems networks, Underwater Vehicles.

I. INTRODUCTION

This paper presents a mixed-initiative environment for
the coordination and control of teams of multiple
autonomous and semi-autonomous vehicles. This
infrastructure (C3I – Command, Control, Communication
and Information) is used in the context of the activities of
the Underwater Systems and Technology Laboratory
(LSTS/USTL) to support the joint operation of multiple
autonomous and semi-autonomous vehicles. In the context
of this work, operation means the wide variety of possible
interactions between the pilot (human or automated) and the
vehicles including: pre-mission setup and preparation of a
vehicle (or multiple vehicles) mission; real-time data
acquisition and visualization; pilot intervention during the
mission execution (mixed initiative operation); coordinated
control of multiple vehicles (fleet control); and post-mission
review and data analysis.

The LSTS is currently performing operations with two
vehicles from the laboratory, one underwater ROV
(Remotely Operated Vehicle) and one AUV (Autonomous
Underwater Vehicle). In the short run, within the
framework of a collaborative research project, joint
operations will include an UAV (Unmanned Air Vehicle)
from the Academy of Portuguese Air Force. There are also
two ongoing projects (KOS – Kits of underwater operations
and PISCIS – Prototype of an Integrated System for Coastal

waters Intensive Sampling) whose main targets are the
design and construction of one ROV [1] and two AUVs,
respectively. This leads to a fleet of 6 vehicles that have to
be operated simultaneously. These joint operations, with
heterogeneous multiple vehicles, and the need to control the
complete fleet in a coordinate manner set the motivation and
the requirements for the development of a framework to
support the coordinated operation of multiple vehicle.

The Systems Engineering Process [2] was used to guide
the development of this infrastructure. In this process, each
stage of the systems life cycle is divided in three activities:
Requirements analysis; Functional analysis; and Synthesis
and design. System life cycle stages range from “System
definition” to “Costumer support”, including “Subsystem
definition” and “Production”. The Neptus infrastructure is
currently in the final phase of the “Subsystem definition”
stage, where all subsystem are integrated and system wide
tests are performed.

This paper is organized as follows. Section II presents
the motivation and state of the art of the existing tools. The
requirements that guided the development of the Neptus
infrastructure, the definition of subsystems, components
and architecture, are presented in section III. Section IV
describes the architecture and the common operational
scenarios of the tool. Section V presents the prototype
implementation of the framework. Finally, in section VI,
conclusions and an outline of future work are presented.

II. MOTIVATION AND STATE OF THE ART

Typically there are many different software applications
to support vehicles operations. Those applications take the
form of vehicle consoles. Consoles are designed and
upgraded when new small requirements arises. Normally
these applications are not designed in an integrated manner.
There are several examples of these types of applications,
one of which is the Remus AUV [3] console. Its main
objective is the display of vehicle trajectories by means of a
replay. During the replay, data gathered is shown on a 2D
graphics. There is also the ability of defining new missions.
No support is given in communications with other devices
like computers, databases or even other vehicles. It also
lacks monitoring/controlling services and mission
simulations based on the vehicles models.

Another example is the ROV hardware based console
from Deep Ocean Engineering [4]. This type of console
without any kind of interface makes it difficult to integrate
the ROV mission with other vehicles or consoles in a
cooperative manner. USTL started to work with ROVs with
a Phantom class vehicle and fully develop its hardware from

 1

 2

scratch. This major modification was motivated to achieve a
way to interface with the vehicle. The developed software
had the form of a simple operating console. Today we have
a main software console for each vehicle. In the near future
we will have single console generating mission files and
viewing data for every operated vehicle.

One case where this level of integration has been done is
at Naval Postgraduate School (NPS) with the AUV
Workbench [5]. AUV Workbench allows the visualization
of vehicle behavior by means of simulation of AUV
physical equations. It also helps the user to see collected
data during the mission. Vehicle behavior visualization is
ensured by 2D or 3D (VRML) screen and can be monitored
in a standard web browser. With this system it is very easy
to replay missions or to do mission rehearsals.

This framework is useful for control algorithm
development and testing because of its physical model
implementation. Another important feature is the mission
planning. This module allows the user to define an
underwater mission in XML (eXtensible Markup
Language) [6]. Then by means of eXtensible Stylesheet
Language Transformation (XSLT) the mission can be
translated to several different types of vehicles. This
workbench also provides reliable data transfer between
AUVs, other vehicles, server agents and human controllers.
Automatic logging of all communications that facilitates
data retrieval for post-mission-analysis and mission
reconstruction is another standard feature.

Although AUV workbench was designed for use with
multiple vehicles it does not allow cooperative missions
using hybrid systems concepts. On-going projects at USTL
require vehicle interactions in the context of hybrid systems
[7]. The main target here is to design a framework that
allows cooperative mission planning and visualization.

Some effort is also being done to integrate sensor
networks in future in such a way that missions can be
on-line re-planned with the information gathered by these
networks.

III. THE REQUIREMENTS

This section describes system requirements for the
Neptus systems from the user’s point of view. The
exposition is partially based on IEEE Std 1362-1998 [8],
which is a standard for system characteristics description
based on the definition of Concept of Operations (ConOps).

The execution of operational missions with the USTL
underwater vehicles are the main motivation for the Neptus
framework. Missions can be performed with either a single
vehicle or with a set of vehicles, depending on the mission
objectives. The vehicles can be chosen from AUVs and
ROVs (also UAVs and ASVs; Autonomous Surface
Vehicles; in the near future). The mission execution with
these classes of vehicles requires four main steps [9].

Operational setup. The mission starts with a recon-
naissance of the site. This includes a preliminary study of
the bathymetric profile in order to place the acoustic
transponders (used for vehicle navigation) in an appropriate
location. Moreover, the site must be accurately studied to
detect natural obstacles. This is crucial for a correct mission
programming. The position of transponders and the initial
position of the vehicle may be determined by using a GPS
or using triangulation with natural references. Another
important stage in the operational setup is the determination
of the data to be measured. Missions may be designed for

getting bathymetric profiles, collect CTD (conductivity,
temperature, depth) data, detect temperature gradients or
inspect underwater structures.

Mission programming. The path of the vehicle(s) is
defined and a mission is specified by selecting a pre-defined
set of maneuvers and tasks. Depending on the vehicle class,
tele-operation is also a selectable maneuver. At this stage,
the vehicle(s) are linked with a support laptop, where an
initial diagnostic is conducted. Obviously, if the underwater
vehicle is an ROV the communication link is always
plugged.

Mission execution. In AUV missions, during the
execution period, the support computer is disconnected.
Then, the AUV is positioned at the initial point, where it
starts its mission. The vehicle is able to navigate completely
autonomously. In the end, the AUV stops at a pre-defined
position and is recovered. Since, there is always a
connection between the operator and the on-board computer
of the ROV, the, user may send direct commands through a
joystick and can always visualize real-time data acquired by
its sensors [10]. It is also possible to run a pre-programmed
mission, as in the AUV case.

Mission analysis. In the end of the mission execution,
the data acquired by the vehicle’s sensors has to be
analyzed.

The communication with AUV during mission
execution is not easy since the acoustic modems have low
bandwidth. The amount of data stored by the on-board
computer may be large and it is not viable to send this data
through acoustic modems.

The Neptus framework [11] should be designed to fulfill
the operational mission requirements described above. Thus,
the top level requirements are listed below and are
represented in the use case diagram of Fig. 1:

 An application to define the environment of the
operational mission. Including navigation references,
bottom profile, obstacles, and mark points;
 An application for the mission programming;
 A console that establish the link between the support
computer and the on-board computer. In the ROV
class, the console should enable users to send joystick
commands and visualize sensors’ data in real-time;
 A simulation platform to allow users to verify the
conformity of the mission program. This tool will give
the user the chance to debug its own mission plan;
 A tool for mission review and analysis of sensors data;
 A repository for gathered data with associated query
services.

Neptus is intended to be used in several scenarios with

different types of vehicles. Thus, the framework has to be
designed such that, some portion of the framework
(modules) may be used separately of the other modules.
These modules must be designed to be easily integrated in
already existing software.

IV. ARCHITECTURE

A. Neptus Components

We can regard the Neptus architecture as organized in
several applications/modules that, together, create the
Neptus environment satisfying the requirements described
in the previous section. In Fig. 2, the deployment diagram
presents the five main applications and their connections.

 3

Monitor mission

Execute emergency plans

Track mission

Instance mission

Specify mission

Abort mission

UserMonitor maneuver

Schedulle maneuvers

Monitor vehicle

Execute mission

Vehicles

<<include>>

<<include>>
<<include>>

<<include>>

<<include>>

Fig. 1. Requirements use case diagram

The five main applications/modules are: Mission
Planner (MP), Mission Console (MC), Mission Reviewer &
Analysis (MRA), Mission Data Broker (MDB) and the
Multiple Vehicle Simulator (MVS).

The Mission Planner (MP) application is intended to be
used in the mission preparation and setup. This activity
includes the generation/edition of missions (by specifying a
hybrid automaton), and map generation with the ability to
prepare visual aids of the mission site and some additional,
minor but helpful, functionalities. For this, it is necessary to
define a language/syntax to describe the mission, the
allocated vehicles and the individual and coordinated
mission plans. For this purpose, we use XML (eXtensible
Markup Language) [6]. The output of the MP will then be
used as an input to the Mission Console (MC).

The Mission Console (MC) is the application in charge
of the mission execution. As stated above, the inputs of this
application are created in the MP. This application must
also provide all the required functionalities to control and
operate the vehicles, such as, visualization of the vehicle(s)
state, and interfaces to send commands to the vehicle(s). In
some circumstances, such as the operation of an ROV, the
motion commands may be sent through a joystick. The
vehicles may also be controlled by a hybrid automaton
controller residing in this application. Naturally, several
sub-modules of this application will run inside the vehicles
being operated.

The post-mission analysis is supported by the Mission
Reviewer & Analysis (MRA) application. This will deal
with the compilation and treatment of the collected data. It
will also provide the support to replay the mission under
analysis.

Vehicle Mission
Console

Mission
Planner

Mission Review &
Analysis

Multiple Vehicle
Simulator

Mission Data
Broker

*

Fig. 2. Deployment diagram

The central repository where all the gathered data can be
stored, properly organized, controlled and published is the
Mission Data Broker (MDB). This module/application will
be based on a SOA (Service Oriented Architecture) with
connection with other application/modules supported by
web services.

The Multiple Vehicle Simulator (MVS) will provide the
functionalities needed to pre-execute a mission and assess
its viability. This application will provide the service of
several simulated vehicles that can be used with the MC or
with the MP for a more accurately mission preview.

All the data that is produced in one of the described
applications is then consumed by another one in a different
stage of a mission. For the data representation XML [6] was
chosen.

B. Data Structure

There are 3 main data elements that will be used to store
data: the vehicle; the mission; and the map.

The vehicle XML file describes the main characteristics
of a vehicle. Some of the properties stored are the
dimensions of the vehicle and several pictures in selected
angles in order to be represented in the MC, MP and MRA
(a 3D view is also available). Additional important
information included in this file is the specification of the
maneuvers that the vehicle is able to perform. Also present
is the information about sensors and actuators available on
the vehicle, available communications channels and some
configuration and transformation files.

The mission XML file will be used to describe a mission.
As seen in Fig. 3, a mission is organized in four elements.
The header represents generic information like a name, a
type, a description and some notes. The definitions contain
information of the vehicles that will be used in the mission,
also a list of maps used and the home referential. The home
referential is used to set a point and a coordinate system axis
to be used for the data produced in the mission. The labels
element will serve to set teams of vehicles that can be
referenced in the plans.

The mission plans will reside in the body of the mission
XML file. In this framework, a mission is defined as a set of
tasks that a set of vehicles must perform in order to
accomplish an objective. In complex missions, vehicles
may cooperate to complete a specific task and humans can
intervene in real-time in order to change some tasks so that
the desired goal is better attained. The tasks will be defined
in one or more plans.

The map XML file represents the map of the area where
the mission will be executed. It will have information of

 4

objects like: marks, transponders, geometrical shapes and
paths.

The main advantage of the use of XML is to be able to
use its schema (XSD – XML Schema Definition Language
[6]) to check its validity using a common validating parser.
There are several available parsers as open source projects
that can be used. Additionally it is also a cross platform
format. Other advantage of using XML as the data format is
the dissemination. That is, data can be shared with partners
and easily integrated/used in other applications because:

 Grammar is known by means of the XSD;
 Data can be transformed/manipulated using XSLT
(eXtensible Stylesheet Language Transformations);
and
 XML documents can be filtered.

Fig. 3. Mission schema

In the near future a XML schema for the mission
execution data will be developed from the basis of the
binary data already being produced by the vehicle and the
input format for the MRA.

C. Scenarios of Operation

There are two scenarios that had to be considered when
developing the Neptus architecture. One is the local use of
this framework. By local use, it is meant the use without any
other link except with the vehicles. This is mostly what
happens in operation scenarios where there is a PC, usually
a laptop, and a cable, or radio link, connecting the PC to the
vehicle.

The other scenario emerges in the pre or post mission
state. Here, we have an open environment with Internet
connections available.

Naturally we should also think in the more complex
instance of the first scenario. That is one with a small local
network that will make possible to interconnect both the
vehicles and several PCs allowing cooperation between
them.

In the first (and also the extended) scenario the MP, MC

and MRA modules will be available. Additionally, in the
extended first scenario, several MCs may be interconnected.

The MCs interconnection will allow the dissemination
of information. This dissemination might be for passive
following of the events of a running mission, or to be used
for an active intervention allowing a coordinated operation
on a high level.

On the second scenario all the modules will be available.
Here, there is an additional concern related to data
dissemination, namely, to partners or clients. In this
situation, the data to be released may contain sensitive
information. This may result in a denial of useful
information to co-operating partners/clients. Filtering
information into small, coherent, discrete packages (views)
makes it easier to control and thus distribute to other
partnership members.

To achieve this, new paradigms have to be used. One of
them is described in [12] or [13]. Such approach enables to:

 Filter information objects from their sources;
 Publish, subscribe, query, and transform data objects;
and
 Specify the policy governing how to disseminate and
access data objects.

This would be a system of systems that manages,

integrates, aggregates, filters and distributes information to
cooperating partners.

D. The Mission Planner

As seen above the Mission Planner (MP) will be used to
plan and evaluate a mission. This tool will be mainly used in
a pre mission execution stage. In Fig. 4, is depicted the
simplified use case that was used in development of this
module.

The MP may be decomposed into several
sub-components; each of them may be used inside other
components. One of them is the mission editor. This will be
the MP core component. With this editor, we are able to
define a mission with all of the elements (Fig. 3) that were
described above.

Another important subcomponent is the Map Editor
Module (MEM), which is used to define maps. These maps
will essentially be a set of objects, each with various
characteristics like size, position or shape. The user will be
able to insert any amount of objects on the map. The map
objects can be marks, transponders, geometrical shapes
(that can be parallelepipeds or ellipsoids), and free-hand and
computer generated drawings (or paths).

Another module is the Mission Graph Editor Module
(MGEM). This will be used to create the plans that are
modeled as hybrid automatons. This editor will allow the
visual construction of these automatons in which each node
is a maneuver.

In the MP, we will have also the possibility to make a
quick preview of the mission just to see a rough execution
of the plans. This will be done by the Preview State
Generator Module (PSGM). This module will be used in
conjunction with the World State Renderer Module
(WSRM), allowing it to perform an animation of the
mission plan.

The WSRM will allow the visual representation of the
world; and will be used in most of the main applications
(MC, MP and MRA). There are several ways of displaying
this: as text messages; as 2D view; and as 3D view.

 5

define mission
HomeReferencial

fill the mission info (header)

fill the mission definitions

create missionUser

assign vehicles to the
mission

define VehicleReferencial

assign maps to mission

create new map assign existent map edit map

create plans

Fig. 4. Create mission use case diagram

V. PROTOTYPE IMPLEMENTATION

Following the Systems Engineering Process [2] an
iterative development process was used. Several releases of
the software were planned, beginning with a prototype
implementation.

It is expected that there will be a wide variety of users
using this software, ranging from scientists (biologists and
others), engineers and archeologists. This vastness of users
compelled us to create user-friendly software, showing only
pertinent information and, whenever possible, providing
tools for error detection of user defined parameters. Next,
we explain the various approaches adopted to achieve these
objectives.

A. Choosing Java as the Programming Language

Java is among the best languages to create visual user
interfaces, having multiple APIs (Application Programming
Interfaces) for this objective only.

We opted for the Swing API (http://java.sun.com/
products/jfc/index.jsp) since it is the most flexible, provid-
ing a large variety of pre-made visual components and
having a pluggable look and feel.

The ability to execute the software over various
hardware platforms was indeed very important, since the
end users of the software tend to use different hardware and
software platforms.

Java is also a great language for team development and
possesses excellent open source Integrated Development
Environments (IDE) like the Eclipse™ IDE
(http://www.eclipse.org).

B. Multidocument Interface

A mission (in Neptus) consists in various individual
elements that have to be defined. To make that explicit for
the user, we opted for a multidocument interface with the
ability to browse over the various mission elements as seen
on Fig. 5. When the user loads or creates a new mission, all
the available items (there are some items that are created by
default) are exposed in a tree-like interface. This interface
allows the user to delete, view and alter previously defined
elements along with the possibility to create new ones.

Fig. 5. Mission Planner application screen shot

C. Real World Coordinates

The planned missions will take place in the real world so
all the locations defined with this software have to be set in
real world coordinates. Since there are many ways of
providing this kind of information (and different areas tend
to use different ones), an effort was made to make the
definition of locations as flexible as possible.

The users can define a location with its absolute Latitude,
Longitude and Height/Depth, or may provide an offset from
a different location. These offsets can be provided in the
form of orthonormal offsets (North/South, East/West, and
Up/Down) or spherical coordinates offsets (Distance,
Azimuth, Zenith). Once defined, a location may be viewed
and altered in the same or any other of the available ways
(Fig. 6).

Again, this was achieved by following Object Oriented
principles, i.e., by encapsulating a location in a single
Object (OO Definition) that provides various ways of
initialization (contructors) and, once initialized, its
information may be accessed in multiple ways.

D. Definition of an Individual Plan

As mentioned before, a mission consists of various
pieces of information. One of those pieces is an individual
plan. An individual plan indicates which vehicle (or class of
vehicles) can perform it and the sequence of maneuvers to
be executed. This represents a series of maneuvers and
conditions of transition between them.

The most appealing way of representing this kind of
information is a graph, so we created a component that
allows the user to visually define an individual plan in the
form of a graph, the Mission Graph Editor (MGE).

E. Mission Graph Editor

This component represents an individual plan as a graph,
allowing the user to insert new nodes (maneuvers) in the
graph and to create edges between the existent nodes.

After selecting a node (or edge) for edition, the user is
presented with a window where the defined parameters for
that item can be viewed or altered.

 6

Fig. 6. Coordinate editing panel

To create this component we used the JGraph API
(http://www.jgraph.com). This API facilitated the develop-
ment since it implements all the basic functionalities that a
graph editor should have and proved to be very robust and
lightweight.

F. Quick Preview of Individual Plans

To prevent possible errors in the definition of individual
plans, the framework includes the possibility for the user to
preview the execution of the current defined plan.

Currently there is a method for the maneuvers to define
its possible implementation. This method consists in the
reference of a file URL (Java class) that will generate the
different vehicle states based in the current world and
vehicle states. In the future, this definition will evolve to be
a hybrid automaton definition that will be parsed and
interpreted by the Neptus Framework.

This capability showed to be very important because it
provides an easy and quick way for the user to completely
verify if a mission is defined according to the objectives.

The end user may chose to view the pre-visualization in
the form of text messages (being possible to save these
messages to a text file) or view a visual animation of the
plan. The animations, in turn, can be viewed either in 2 or 3
dimensions. We used the Java2D and Java3D API’s to
provide these features mostly because they were very easy
to integrate with the rest of the application.

G. Creation of Environmental Maps

The MP application also includes a tool that allows the
visual definition of environmental maps, the Mission Map
Editor (Fig. 5). This editor allows the insertion of different
kinds of elements to be possible to recreate the conditions
encountered in the real world environment.

Once created, a map can be saved in an individual XML
file making it possible the reutilization of its information.
When creating a mission, the user can opt to create new
maps for that mission or use already existing maps stored in
XML files.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented the current state of development of
the Neptus framework, a mixed-initiative environment to

support the coordinated joint operation of multiple
autonomous and semi-autonomous vehicles.

The modules MP, MRA and MC are in advanced staged
of developing and already being used (in case of MC and
MRA) or in the final stages of development (in case of the
MP). In the case of MVS we already have a basic simulator
that is being used with the MC for tests. Next steps will
include some work in extending the MC to fully support the
extended first scenario and also the MDB will start to be
implemented.

ACKNOWLEDGMENTS

Paulo Sousa Dias, Sérgio L. Fraga and Rui Gomes
would like to thank the financial support of FCT (Fundação
para a Ciência e Tecnologia) in their PhD work.

This research has been partly supported by Agência de
Inovação under projects PISCIS and KOS.

REFERENCES

[1] Rui Gomes, A. Sousa, S. L. Fraga, A. Martins, J. Borges
Sousa and F. Lobo Pereira, “A New ROV Design: Issues on
Low Drag and Mechanical Symmetry” (provisory title),
Today's technology for a sustainable future, OCEANS
Europe 2005, Brest, France, June 20-23, 2005, in press.

[2] IEEE standard for application and management of the
systems engineering process, IEEE Std 1220-1998, Vol., Iss.,
22 Jan 1999.

[3] Hydroid Inc., <http://www.hydroidinc.com/> (April 2005).
[4] Deep Ocean Engineering, <http://www.deepocean.com>

(April 2005).
[5] Naval Postgraduated School,

<http://terra.cs.nps.navy.mil/AUV/workbench> (April 2005)
[6] XML – Extensible Markup Language 1.0 (Third Edition),

W3C Recommendation 4th February 2004,
<http://www.w3c.org/TR/2004/REC-xml-20040204/>
(March 2005).

[7] Sérgio L. Fraga, João B. Sousa, A. Girard, A. Martins, “An
Automated Maneuver Control Framework for a Remotely
Operated Vehicle”, OCEANS, 2001. MTS/IEEE Conference
and Exhibition, Vol.2, Iss., 2001 Pages: 1121-1128 vol.2.

[8] IEEE guide for information technology - system definition -
Concept of Operations (ConOps) document, IEEE Std
1362-1998, Vol., Iss., 19 Mar 1998.

[9] P. Ramos, M. V. Neves, N. Cruz, F. L. Pereira, “Outfall
monitoring using autonomous underwater vehicles”,
International Conference MWWD 2000 – Marine Waste
Water Discharges 2000, Génova, Italy, pp. 321-331.

[10] S. L. Fraga, J. B. Sousa and F. L. Pereira, “User-Assisted
trajectory generation for autonomous underwater vehicles”,
Marine Technology and Ocean Science Conf. – OCEANS
2003, San Diego, CA, USA, September 22-26, 2003, pp.
1234-1239.

[11] Neptus, <http://whale.fe.up.pt/neptus> (April 2005)
[12] G. M. Gonçalves, P. S. Dias, A. Santos, J. B. Sousa, F. L.

Pereira, “An Implementation of a Framework for
Cooperative Engineering”, IFAC 2005, Praha, Czech
Republic, July 4-8, 2005, in press.

[13] Marmelstein, R., Force Templates: A Blueprint for Coalition
Interaction within an Infosphere, IEEE Intelligent Systems,
vol. 17, 2002, pp. 36-41.

	I. INTRODUCTION
	II. MOTIVATION AND STATE OF THE ART
	III. THE REQUIREMENTS
	IV. ARCHITECTURE
	A. Neptus Components
	B. Data Structure
	C. Scenarios of Operation
	D. The Mission Planner
	V. PROTOTYPE IMPLEMENTATION
	A. Choosing Java as the Programming Language
	B. Multidocument Interface
	C. Real World Coordinates
	D. Definition of an Individual Plan
	E. Mission Graph Editor
	F. Quick Preview of Individual Plans
	G. Creation of Environmental Maps
	VI. CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGMENTS
	REFERENCES

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

